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Nanoencapsulation and targeted chemical delivery techniques have transformed many fields, such 
as pharmaceutical drug delivery for medical treatment and diagnosis, and which can similarly trans-
form several upstream oil and gas operations. This article describes the dual nanoencapsulation of 
superparamagnetic iron oxide nanoparticles (SPIONs) and petroleum sulfonate surfactants to produce 
a hybrid nanosurfactant in high salinity water (56,000 ppm) using an inexpensive, scalable, and 
straightforward synthesis protocol. This novel magnetically labeled nanofluid is designed to: (1) en-
hance the residual oil mobilization via altering the rock’s wettability and reducing the interfacial 
tension (IFT), and (2) enable in situ monitoring of injected fluids when combined with electromag-
netic surveys. 

Nanofluids encapsulating a petroleum sulfonate surfactant and three different concentrations of 
5-nm SPIONs were prepared using a two-step nanoencapsulation method. Both colloidal and chem-
ical stability of the prepared formulations were tested at 90 °C for over a year. The results showed 
that all the formulations exhibited remarkable long-term colloidal and chemical stability under these 
close-to-reservoir conditions. Transmission electron microscopy (TEM) images confirmed the en-
capsulation of the SPIONs. 

The SPION’s nanofluids have successfully reduced the IFT between the crude oil and water by 
more than three orders of magnitude — from ~25 mN/m down to ~0.01 mN/m. These IFT and 
stability results demonstrate a strong synergy between the SPIONs and the petroleum sulfonate 
surfactant. It is worth noting that this novel encapsulation platform enables the encapsulation of a 
wide range of nanoparticles to generate a library of multifunction nanofluids to support several up-
stream applications.

Magnetically Labeled Hybrid Nanosurfactant  
for Upstream Oil and Gas Operations

Dr. Nouf M. AlJabri, Hussain A. Shateeb, Mustafa A. Alsaffar and Dr. Amr I. Abdel-Fattah

Abstract  /

Introduction
The unique properties of nanoparticles, such as high surface-to-volume, nano-size, and potential compatibility 
with subsurface fluids attracted considerable attention to improving the chemical enhanced oil recovery (EOR) 
either as additives or as nanofluid flooding1, 2. Nanofluids are fluids that consist of nanoparticles of one phase 
(solid, liquid, or gas) suspended in continuous medium of another phase to form chemically and colloidally 
stable dispersions. The carrier medium is usually comprised of aqueous or low thermoconductive fluids, while 
the dispersed phase of nanoparticles may vary from metal oxides to carbon-based nanoparticles, to carbides. 
The nanofluids’ novel properties have prospered with many subsurface applications such as improving heavy 
oil production3, EOR4, 5, and boosting the fracturing fluid properties6. 

The oil mobilization using nanofluid flooding has been widely studied, and many plausible mechanisms 
are proposed in the literature. These mechanisms are: The rocks’ wettability alteration, interfacial tension 
(IFT) reduction, disjoining pressure, and in situ Pickering emulsion. The disjoining pressure in porous media 
to mobilize the residual oil is proposed as a mean plausible mechanism during nanofluid flooding1, 7. In this 
mechanism, nanoparticles form a wedge film at the interface between the oil and rocks’ surface, which allows 
for increasing the disjoining pressure and releasing the oil from the surface. 

Other studies have investigated the synergy effect between the nanoparticles and the base fluid, which leads 
to reduce the IFT significantly beyond the values of using nanoparticles or surfactants alone8, 9. The repulsive 
interactions between nanoparticles and surfactants force surfactants to be located at the interface, rather than 
to stay in the solution, leading to lower IFT than the use of surfactant or nanoparticles. It is important to 
note that at high salinity (≥ 25,000 ppm) the ions will diminish this effect due to the ion’s influence on the 
nanoparticle’s surface charge. 

An alternative mechanism, which also may play a possible role in the synergistic effect, is the effect of zwitte-
rionic surfactants or Janus nanoparticles10. In this situation, the dual functionality and anisotropic properties 
of nanoparticles will enable the nanoparticles’ selective adsorption at the interface11, 12. 

Figure 1 is an illustration of the proposed mechanisms of oil displacements using nanofluids.
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Among nanoparticles, the superparamagnetic iron 

oxide nanoparticles (SPIONs) exhibit unique properties 

that can be exploited for several reservoir applications 

such as fluid mapping, IFT reduction, and rock sur-

face wettability alteration. They are difficult to remain 

suspended in high salinity formation water. This work 

demonstrates the use of a nanosurfactant as a base fluid 

to produce smart nanofluid, through encapsulation of 

SPIONs within the oil core of nanosurfactant droplets. 

In this work, we developed the magnetically labeled 

nanofluid using an inexpensive and straightforward 

synthesis route. Interestingly, the SPION’s nanofluid 

exhibited remarkable colloidal stability at 90 °C and 

in 56,000 ppm for over a year. Transmission electron 

microscopy (TEM) results confirmed the encapsula-

tion of five SPIONs into nanosurfactant droplets. The 

SPIONs’ nanofluid showed a significant reduction 

in IFT compared to a conventional nanosurfactant. 

Experimental Work 

Material

Uncoated iron oxide nanoparticles (IONPs), with av-

erage particles of 50 nm, were used in this study. Also, 

SPIONs (5 nm, 5 mg/mL) in toluene were purchased 

from Millipore Sigma. The magnetization of the SPI-

ONs for 5 nm is ≥ 30 emu/g (at ambient temperature 

under 4,500 Oe). The SPIONs were hydroponically 

coated to allow their solubility in oil/internal phase of 

nanosurfactant for an efficient encapsulation. Petronate 

HL/L (61 wt% active) as petroleum sulfonate surfactant 

was obtained from Sonneborn.

The co-surfactant used is a zwitterionic cocamido-

propyl hydroxysultaine surfactant (Cola®Teric CBS), 

with 48 wt% of active ingredients without further pu-

rification. A brine analogue (around 60,000 mg/L of 

total dissolved solids) was used to synthesize the base 

fluid as well as to test the high salinity impact on the 

formulations. 

Encapsulation of SPIONs into Nanosurfactant 

The IONPs, at different concentrations, were encapsu-

lated into nanosurfactants to produce three nanofluid 

formulations. Different volumes of IONP solutions (0.3 

mL, 0.6 mL, and 0.9 mL) were added to 5.0 wt% of 

Petronate HL/L, which followed with the addition of 

deionized (DI) water (5.6 mL). To prepare the nano-

fluid, 1.0 mL of the HL/L IONPs phase was added 

to 1.5 mL of the CBS solution phase (4.0 wt%), and 

mixed for 5 minutes before the addition of 52.0 mL of 

brine analogue, Fig. 2. To optimize the encapsulation 

and maximize the colloidal stability, we have explored 

particles’ encapsulation out of oil cores, an external 

encapsulation method (EEM). This was produced 

similarly to the aforementioned approach except that 

the particles were added to the CBS phase, not to 

the HL/L.

To maximize the encapsulation efficiency, 5 nm SPI-

ONs were encapsulated into nanosurfactant droplets. 

For that, 5 nm SPIONs in toluene (5 mg/mL) were 

mixed at different ratios with as received Petronate 

HL/L, Table 1. The toluene was removed from the 

mixture and residue dried at 95 °C overnight to elim-

inate any possible impact of toluene on the IFT. DI 

water (5.6 mL) was added to the HL/L encapsulated 

SPIONs to complete the first step of the encapsulation. 

Then, the surfactant phase was prepared by dissolv-

ing 0.49 g of CBS (48 wt% active ingredient) in 6.0 

mL of DI water. Both phases were mixed separately 

at the ambient condition until each solution become 

homogeneous. To prepare the nanofluid, 1.0 mL of the 

HL/L SPIONs phase was added to 1.5 mL of the CBS 

phase and mixed for 5 minutes before the addition of 

52.0 mL of brine analog. 

Fig. 1  An illustration of the proposed mechanisms of oil displacements using 
nanofluids.

Fig. 2  A schematic of (a) internal encapsulation, and (b) external encapsulation 
methods.
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Cryogenic TEM (Cryo-TEM)

As-prepared nanofluids were drop-cast on a copper 

grid with 1.2 μm holes on a 5 nm carbon support film 

substrate. Plunge freezing was performed on a Gatan 

CP3 Cryoplunge at Harvard University’s Center of 

Nanoscale Systems (CNS) using liquid ethane as the 

cryogen. Samples were imaged on FEI Tecnai Arctica 

Cryo-TEM at the Harvard CNS at 200 kV acceler-

ating voltage.

IFT Measurements

The impact of the nanofluids on the oil mobility was 

determined by measuring the IFT values after treating 

the samples with I-NF-1,
,
 I-NF-2, I-NF-3, and E-NF-1, 

E-NF-2, E-NF-3, respectively. The IFT study was con-

ducted using a KRÜSS Spinning Drop Tensiometer. 

Crude oil (0.8908 g/ml) was used and the tempera-

ture was fixed at 90.0 ± 0.4 ºC. Each nanofluid was 

filled in the capillary tube, followed with introducing 

the filtered crude oil. The oil droplet’s diameter was 

measured every two minutes for 30 minutes. 

Results and Discussions

Encapsulation Method Evaluation 

Similar to any EOR fluid, nanofluid chemical/colloidal 

stability is a crucial element that should be evaluated 

before the injection in the reservoir. The nanofluid’s 

stability is influenced by the particles’ charge, size, 

concentrations, and encapsulation compartment space. 

Therefore, we designed and evaluated two possible 

encapsulation methods to produce nanofluid with 

maximum encapsulation efficiency and stability. 

The internal encapsulation method (IEM) strives to 

encapsulate nanoparticles in the oil core of the nano-

surfactant droplets. In contrast, the EEM is designed to 

encapsulate the nanoparticles outside of the oil cores. 
The IONP’s size was fixed at 50 nm with the IONP 
concentrations of 0.02 wt%, 0.04 wt%, and 0.08 wt%, 
respectively. Three samples, namely, I-NF-1, I-NF-2, 
and I-NF-3 were prepared using IEM, and the other 
three, E-NF-1, E-NF-2, and E-NF-3, were prepared 
by the EEM. 

All the prepared nanofluids were incubated at 90 °C, 
photographed, and monitored to record any physical 
change. Notably, the EEM yielded unstable colloids 
despite the IONP’s concentration. After 24 hours of 
incubation, samples E-NF-1, E-NF-2, and E-NF-3 ex-
hibited aggregation, which become a complete phase 
separation after three days only, Fig. 3. This aggrega-
tion is attributed to the incomplete encapsulations of 
SPIONs in the aqueous phase of the nanosurfactant. 
Also, encapsulating SPIONs in the CBS phase has 
influenced the rheological properties of the co-surfac-
tant and disturbed the nanofluid stability accordingly. 

The IEM resulted in remarkably stable nanofluids 
during the initial stability at 90 °C, Fig. 4. The IONP’s 
size was fixed at 50 nm with the IONP concentrations 
of 0.02 wt%, 0.04 wt%, and 0.08 wt%, respectively. 
To extend the phase behavior study, the nanofluids 
were transferred to tightly sealed pressure tubes and 
incubated in an oven at 90 °C. The SPION’s nanofluids 
stability was checked and photographed regularly, and 
interestingly, all the samples showed long-term stability. 

This can be explained by encapsulating the particles 
in the oil core of the nanosurfactant, providing enough 
shell to protect the particles from the extreme condi-
tions and high ion concentration. Therefore, the IEM 
was selected as an optimum encapsulation method 
to produce high salinity and high temperature stable 
nanofluids. 

Sample ID Petronate HL/L (g) 5 nm SPIONs*(mL)
wt% of SPIONs in  

5 wt% Petronate HL/L Solution

Nanofluid-1 0.5 0.3 0.02

Nanofluid-2 0.5 0.6 0.039

Nanofluid-3 0.5 0.9 0.083

Table 1  The amount of 5 nm SPIONS in Petronate HL/L (surfactant phase).

Fig. 3  Images of the three nanofluid formulations prepared by the EEM of IONPs in the CBS phase: (a) t = 0 h, (b) t = 24 h, (c) t = 48 h,  
and (d) 72 h.
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IFT Measurements 

The presence of IONPs in the nanosurfactant’s droplets 
is expected to alter the surfactant’s rheological prop-
erties, therefore, lower IFT values can be achieved 
compared to conventional nanosurfactants. The IFT 
measurements between crude oil and the prepared 
nanofluids were conducted using a spinning drop ten-
someter. The results confirmed a significant reduction 
in IFT values when the nanofluids were introduced. 
I-NF-1, I-NF-2, and I-NF-3 have successfully reduced 
the IFT to 0.021 mN/m, 0.018 mN/m, and 0.022 
mN/m, respectively, Fig. 5. 

Interestingly, the nanofluids lowered the IFT 50% 
less than the nanosurfactant alone or particles alone, 
confirming the synergy between the nanosurfactants 
and IONPs. Notably, increasing the IONP’s concentra-
tion beyond 0.02 wt% did not contribute to a further 
reduction in the IFT values, indicating that the 0.02 
wt% is the optimum concentration. 

Loading Efficiency Optimization 

To increase the IONP’s loading in the nanosurfactant’s 
oil droplets, we further reduced the particle size from 
50 nm, as an average, to 5 nm. The formulations were 
prepared by encapsulating 0.02 wt%, 0.04 wt%, and 
0.08 wt% of five SPIONs using the aforementioned 
IEM. All the formulations, despite the SPION’s con-
centrations and sizes, exhibited colloidal and chemical 
stability after 11 months at 90 °C, Fig. 6. 

To ensure a fair comparison, we fixed all the param-
eters, including particle concentration (0.04 wt%) and 
varied the particle size only to analyze the size effect on 
the loading efficacy, and therefore on the IFT. Figure 
7 shows the impact of the particle’s size on the IFT 
and the synergy between the nanosurfactant and the 
IONPs. The IFT significantly decreased to 0.02 mN/m 
compared to 0.04 mN/m in the case of using the na-
nosurfactant only. Reducing the particle size from 50 
nm to 5 nm has successfully reduced the IFT to 0.01 
mN/m. This result suggests that more of the SPIONs 
were encapsulated in the nanosurfactant droplets, which 
improved the synergic effect. These results confirm the 
nanofluid’s potential for EOR applications. 

Cryo-TEM Characterization 

Nanofluid flooding is one of the most economical uti-
lizations of nanoparticles in EOR due to the synergic 
effect between the particles and base fluids. In this 

work, the superior performance and remarkable sta-

bility of the nanofluids are owing to the presence of 

IONPs/SPIONs in the nanosurfactant droplets. We 

characterized nanofluids using cryo-TEM to confirm 

the encapsulation of the IONPs/SPIONs. The SPIONs 

encapsulated free nanosurfactant shows some multilayer 

oil swollen micelles attributed to the coalescence of 

smaller nanosurfactant vesicles together, Fig. 8a. The 

nanofluids’ images confirmed the SPIONs encapsula-

tion within the nanosurfactant droplets, and in some 

cases, it was observed that multiple SPIONs were 

encapsulated in one nanosurfactant droplet, Fig. 8b. 

Fig. 4  Images of the three nanofluid formulations prepared by the IEM of IONPs in the HL/L phase: (a) t = 0 h, (b) t = 24 h, (c) t = 48 h,  
and (d) 72 h.

Fig. 5  The IFT results of I-NF-1, I-NF-2, and I-NF-3, successfully reduced to  
0.021 mN/m, 0.018 mN/m, and 0.022 mN/m, respectively.

Fig. 6  Images of the three nanofluid formulations prepared by the IEM of the 
SPIONs at 5 nm.

IONPs concentrations%
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This observation is in alignment with the reduction 

in IFT values after reducing the particle size to 5 nm. 

It is important to note that the cryo-TEM cannot be 

provided with a higher resolution and it is hard to 

distinguish smaller than 5 nm SPIONs within the 

nanosurfactant core, due to the technique limitations. 

It is not possible to obtain all SPION encapsulated 

nanofluids in a focal plane, as the samples are beam 

sensitive. Therefore, a large number of the encapsu-

lated SPIONs are potentially out of the focus plane 

and were not visible. 

Conclusions 
We report the synthesis of SPION encapsulated nano-

fluids using two different encapsulation procedures 

for reservoir applications. We studied the influence 

of particle size, coating, and the concentration of the 

SPION’s particles on the nanofluid’s stability and 

ability to reduce the crude oil/water IFT. Cryo-TEM 

images confirmed the encapsulation of SPIONs in the 

nano-sized oil droplets. The phase behavior and IFT 

results indicated the synergy between the SPIONs and 

the petroleum sulfonate surfactant in the prepared 
nanofluids. The IFT value was decreased to 0.01 mN/m 
at 0.04 wt% of the 5 nm SPION concentration.

Our findings suggest that the size of the SPIONs has 
no direct influence on the nanofluid’s colloidal stabil-
ity while beneficially affecting its ability to mobilize 
oil. In-depth analysis is ongoing to understand the 
type of synergy between the magnetic nanoparticles 
and the petroleum sulfonate surfactant. Based on the 
IFT reduction and remarkable colloidal stability of 
the investigated nanofluids under close to reservoir 
condition, we believe that they can be utilized for a 
number of reservoir applications. This outlined en-
capsulation method can be generalized to synthesize 
multiple nanofluids with a variety of surfactants and 
nanoparticles.
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Unconventional and tight gas reservoirs are located in deep and competent formations, which requires 
massive fracturing activities to extract hydrocarbons. Some of the persisting challenges faced by 
operators are either canceled or nonproductive fractures. Both challenges force oil companies to drill 
new substitutional wells, which will increase the development cost of such reservoirs.

A novel fracturing method was developed based on thermochemical pressure pulses. Reactive 
material of exothermic components are used to generate in situ pressure pulses, which are sufficient 
to create fractures. The reaction can vary from low-pressure pulses, to a very high loading — up to 
20,000 psi — with short pressurization time.

In this study, finite element modeling (FEM) was used to investigate the impact of the generated 
pressure pulse load, by chemical reaction, on the number of induced fractures and fracture length. 
Actual tests of pulsed fracturing were conducted in lab-scale using several block samples compared 
with modeling work. There was a great relationship between the pressure load and fracturing behav-
ior. The greater the pulse load and pressurization rate, the greater the number of created fractures, 
and the longer the induced fractures.

The developed novel fracturing method will increase stimulated reservoir volume of unconvention-
al gas without introducing a lot of water into the formation. The new method can reduce formation 
breakdown pressure by approximately 70%, which will minimize the number of canceled fracturing.

Thermochemical Pulse Fracturing of Tight Gas: 
Investigation of Pulse Loading on Fracturing 
Behavior

Ayman R. Al-Nakhli, Dr. Zeeshan Tariq, Dr. Mohamed Mahmoud and Dr. Abdulazeez Abdulraheem

Abstract  /

Introduction
The continuous demand and increase on fossil fuels has made unconventional gas an attractive energy re-
source to support industrial development. Unconventional reservoirs are located in deep tight formations, 
which require special stimulation techniques to ensure economical production. The development progress 
in drilling, completion, and fracturing techniques made commercial production from such tight resources a 
game changer for reserves. As the formation is very tight, multistage fracturing was introduced to increase gas 
production from each well; however, more techniques need to be developed to improve permeability around 
induced fractures. Having such reservoirs in deep formations — with high stress — makes it very difficult to 
fracture using the conventional hydraulic fracturing method1.

Unconventional gas is located in deep, tight, and highly stressed reservoirs. This resulted in three main 
challenges, which are high breakdown pressure, low drainage area around a fracture, and high drilling and 
completion costs. A low drainage area forces a gas producer to carry out horizontal drilling, and multistage 
fracturing that can reach up to 200 stages per well. A high breakdown pressure forces an operator to increase 
the completion pressure rating to manage fracturing such reservoirs. Even with a high rating, approximately 
30% of the wells are annually canceled worldwide, due to high breakdown pressure that cannot be met with 
hydraulic fracturing2.

There are mainly four types of cost associated with the development of tight gas wells, namely drilling and 
completion, fracturing, labor, and steel, Fig. 13. With the development of horizontal drilling, fracturing activ-
ities are increasing, which represents 34% of the total cost. Subsequently, if the operator failed to fracture a 
well, the cost will be 100%, with the charges of drilling a replacement well. Locked potential is also another 
uncounted cost. Keeping in mind that approximately 30% of tight and unconventional gas wells are not pro-
ductive globally, the costs of canceled fracturing turned out to be very high.

Discussion

Limitation of Hydraulic Fracturing 

Currently, there is no foreseen or practical solution to overcome high breakdown pressure, which results in 
the cancelation of numerous fracturing jobs around the globe.

During the injection test, Fig. 2, slurry was pumped at 15 barrels per minute (bpm) with a wellhead pressure 
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of 12,800 psi, and a downhole pressure of 18,700 psi. 

During the main hydraulic fracturing stage, Fig. 3, the 

pumping rate was increased to 20 bpm at a wellhead 

pressure of 13,800 psi. The bottom-hole pressure was 

approximately 19,000 psi, which was below the break-

down pressure required to initiate a fracture. Pumping 

was then canceled, due to reaching the completion 

limitation of 15,000 psi.

Fracturing Fundamentals and Development 

Since the 1960s, there are fundamentally three types of 

formation fracturing: hydraulic fracturing, gas pulse, 

and explosives, Fig. 44. Hydraulic fracturing is based 

on pumping a large amount of water into the formation 

to induce fractures. This type of fracturing is safe, and 

easy to apply. Consequently, one of the disadvantages of 

Fig. 1  The breakdown of the four main types of costs in 
the U.S. associated with the development of tight 
gas wells3.

Fig. 2  A typical example of an injection test during hydraulic fracturing.

Fig. 3  A typical example of a canceled hydraulic fracturing job, due to high breakdown pressure.

TIME - min
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hydraulic fracturing in a tight formation, is the hydraulic 

pressure limitation that results in several fracturing 

cancelations. Moreover, fracturing fluid, whether slick 

water or cross-linked gel, is a damaging material for 

the formation. Introducing such fluid to a very tight 

formation can create water blockage and prevent gas 

transmissibility from a reservoir to an induced fracture5.

During hydraulic fracturing, fluid is pumped from 

the surface with high pressure until a fracture is in-

troduced in the formation and propagates to several 

hundred feet. Another type of fracturing is via using 

explosives, where an explosion-based fluid is introduced 

and activated downhole. During the field-testing of such 

fracturing, it was found that multiple fractures were 

created, with a compacted zone around the wellbore. 

A compacted zone is a damaged zone, which limits 

gas production.

A third type of fracturing is propellant-based frac-

turing, which also creates multiple fractures around 

a wellbore, as tested. Subsequently, during propellant 

testing, no compacted zone was found. A fourth and 

novel type of fracturing has recently been developed, 

based on exothermic reaction. The new method em-
ploys reactive chemicals to generate an in situ pressure 

pulse, which can be used as a stand-alone or hybridized 
method with hydraulic fracturing.

In this study, we strive to investigate the pressurization 
rate and pulse loading of thermochemical fracturing 

on induced fractures. An actual lab test and simulation 
was implemented6.

In Situ Pressure Pulse Using Thermochemicals 

Fracturing can be induced into a formation using an 
in situ pressure pulse, generated by thermochemicals. 

Figure 5 shows the pressure and temperature profiles 
of a typical thermochemical pulse generated in an 
autoclave system. Figure 6 shows the high-pressure, 

high temperature autoclave used for thermochemical 

pulse testing.

Fig. 4  The three fundamental types of fracturing4.

Fig. 5  The temperature and pressure profiles of a typical thermochemical pulse.
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Exothermic reaction, when it is activated downhole, 

can generate a significant amount of pressure. The 

in situ generated pressure can completely replace the 

required hydraulic pressure to fracture a formation, or 

can be hybridized with hydraulic fracturing to minimize 

the required wellhead pressure. So, when the new 

pulse fracturing treatment is used, three forces will be 

applied on the formation, which are hydraulic pressure, 

hydrostatic pressure from the wellbore column, and a 

pressure pulse generated by thermochemicals.

Therefore, all of these pressures can be applied to 

fracture a formation, and reduce the required wellhead 

pressure. As a result, the number of canceled fracturing 

stages around the world will be reduced, and likewise, 

the number of unproductive wells.

Impact of Pulse Rate and Loading on Induced 

Fractures

During formation fracturing, the pressurization rate can 

determine the number of induced fractures. When the 

pressurization rate, during fracturing, is microseconds, 

multiple fractures will be created, with an impacted 

zone around the wellbore. This type of fracturing is 

created using explosives only.

Another type of fracturing is pulse fracturing, where 

the pressurization rate is in milliseconds. This type of 

fracturing can be done using tailored gas or the newly 

developed thermochemical fracturing. Moreover, the 

thermochemical treatment is based on aqueous fluid, 

so it can be hybridized with hydraulic fracturing. In 

this type of pulse fracturing, multiple fractures will 

also be created without an impacted damaged zone, 

which makes it attractive for application.

A third type of fracturing is when the pressurization 

rate is slow and in minutes, which is hydraulic fractur-

ing. During hydraulic fracturing, one main fracture 

is developed.

Chemical Pulse Testing

In this work, we strive to study the effect of pulse load 

and pressurization rates on induced fractures. An au-

toclave system was used to measure the pulse loading 

with different chemical formulas. It was found that the 
pressure pulse load can vary from 500 psi up to 19,600 
psi, Fig. 71. The pressurization rate also can vary from 
days to milliseconds by changing the reaction behavior. 
In situ reservoir pressure can positively impact the 
magnitude of the pressure pulse. The higher the in situ 
pressure prior to triggering the reaction, the higher 
the pressure pulse magnitude, Fig. 8.

The pressure pulse was conducted in an autoclave 
with various initial pressure, from zero up to 1,800 psi. 
The initial pressure was subtracted from the recorded 
peak pressure and the results were plotted. The figure 
shows that the higher the initial pressure, the greater 
the pressure pulse magnitude. At an initial pressure of 
zero, the pressure pulse was approximately 2,000 psi. 
When the initial pressure was increased to 1,800 psi, 
the pressure pulse, using the same formula, was mea-
sured at 3,150 psi. This shows that the pulse magnitude 
was increased by 1,150 psi, due to the in situ pressure.

Numerical Modeling of Pulse Loading

To study the impact of pulse loading and the pulse 

Fig. 6  The high-pressure, high temperature autoclave 
system used for thermochemical pulse testing.

Fig. 7  Thermochemical pulse fracturing can vary, up to 19,600 psi1.

Fig. 8  The impact of in situ pressure on the peak of the thermochemical pulse.
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pressurization rate, numerical modeling was done using 
the finite element analysis simulator ABAQUS. The 
objective of this numerical study is to investigate the 
impact of pulse magnitude and the rate on the induced 
fracture shape and depth. Figure 9 shows the 3D finite 
element model (FEM) cement block used for this study. 
The block model has a central borehole with homo-
geneous porosity and permeability texture, Table 17.

The cement block was modeled using a concrete 
damage plasticity model in the ABAQUS software. 
A stress-strain relationship and damage parameters 
were used as proposed models8. Equations 1 and 2 
were used to calculate the compressive and tensile 
damage parameters.

The compressive damage parameter, d
c
, can be 

written as:

1

The tensile damage parameter, d
t
, can be written as:

2

where d
c
 is the compressive damage parameter, d

t
 is 

the tensile damage parameter, σ
c
 is the compressive 

strength of the mortar cement, σ
t
 is the tensile strength 

of the mortar cement, E
c
 is the modulus of elasticity 

of the cement, ε
c
pl and ε

t
pl are the plastic strains that 

corresponds to the compressive and tensile strength 

respectively, and b
c
 and b

t
 are the constant parameters.

Figure 10 shows the used sensitivity of the breakdown 

pressure with respect to Young’s modulus, and Fig. 11 

shows the sensitivity of the breakdown pressure with 

respect to Poisson’s ratio.

Pulse Fracturing Experiment

As a base case, the 8 × 8 × 8” cement block, with a 1½” 

borehole in the middle, was used to carry out pulse 

fracturing with thermochemicals. The cement block 

was placed in a biaxial frame and 4,000 psi of stress was 

applied in all horizontal directions. Thermochemical 

fluid was injected at room temperature. Then, the 

block temperature was increased by an internal heater. 

Upon reaching the designed triggering temperature, 

the reaction was activated at 150 °F, and a pressure 

pulse was generated.

The block temperature was increased to 288 °F, due 

to the exothermic reaction, and generated a pressure 

pulse up to 4,000 psi, Fig. 12. Four fractures were 

created in all directions, Fig. 13. This result, of having 

multiple fractures with pulse loading is matching the 

theoretical prediction described earlier. The results 

obtained from the experimental work of pulse fracturing 

was modeled using ABAQUS software. Moreover, 

Model Parameters Value Units

Dimension of the FEM block 101.6 × 101.6 × 101.6 mm3

Density 2.31 g/cc

Young’s modulus 38 GPa

Poisson’s ratio 0.3 —

Unconfined compressive strength 40 MPa

Scratch strength 60 MPa

Thermochemical fluid viscosity 0.1 cp

Permeability 0.005 mD

Porosity 12.3 %

Tensile strength — —

Table 1  The input parameters of the FEM cement block.

Fig. 9  A 3D image of the FEM cement block used for the study.
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during the model, the pulse loading and rate were 

varied to measure the impact of these parameters on 

induced fractures.

Varying Pulse Load

Pressure pulse loading was varied from 1,500 psi to 

22,000 psi, and the impact on created fractures were 

measured. Fracturing started when the pulse load was 

at a minimum of 2,900 psi, with one bi-wing fracture 

created. Below this load, there was no noticeable frac-

tures initiated in the model. Subsequently, when the 

pulse load was increased to 4,400 psi, two bi-wing 

fractures were created, Fig. 14. At a pressure load of 

7,300 psi, the length of the two induced bi-wing frac-

tures were deeper by twofold of the fractures created 

with a pulse at 2,900 psi.

When the pulse load increased to 14,500 psi, the 

fractures were deeper by fourfold of the initial frac-

tures. When the pulse load was increased to 21,800 

psi, three bi-wing fractures were created, however, 

the fracture length was only threefold of the initial 

fractures. Therefore, the model investigation illustrated 

that the higher the pulse load, the more fractures were 

created, and the deeper the fracture’s length.

Varying Pulse Pressurization Rate

During this investigation, the pressurization rate of the 

pressure pulse was varied from 10 minutes to 0.01 µs, 

Fig. 15. It was noticed that the fracture initiation was 

started at a minimum pressurization rate of 1 minute, 

Fig. 10  The sensitivity of breakdown pressure with Young’s modulus. Fig. 11  The sensitivity of breakdown pressure with Poisson’s ratio.

Fig. 12  The biaxial frame test of pulsed fracturing at 4,000 psi confined stress for the cement block.
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with one created bi-wing fracture. At a 6 second pres-
surization rate, two bi-wing fractures were created. 
At 100 ms, the created two bi-wing fractures were 
threefold deeper.

When the pressurization rate was at 10 ms, the depth 
of the fractures were approximately fourfold of the 
initial fractures created at a pressurization rate of 1 
minute. Consequently, at this rate of 10 ms, two bi-wing 
fractures and two more random fractures were created. 
Therefore, the total number of created fractures were 
four fractures.

At 1 ms, the fracturing behavior was the same of 10 
ms, however, with a deeper fracture length. At the 
pulse with a pressurization rate of 1 µs, intensive frac-
turing was created with almost three bi-wing fractures. 
The fracture width was almost sevenfold of the initial 
fractures.

Orienting Pressure Pulse 

As it was demonstrated, by experimental and mod-
eling work, thermochemical pulse-based fracturing 

generate multiple fractures. The higher the pulse load, 

the deeper and larger the number of fractures that 

will be developed. Pressurization time is also another 

critical factor of the created fractures. With the same 

pressure load, reducing the pressurization time will 

create more and deeper fractures. Therefore, it is not 

only the load, but also the pressurization time that will 

determine the expected shape of fracturing.

Subsequently, as more fractures are developed 

through pulsing, energy is scattered around each of 

the induced fractures, ending with a short fracture 

length. To have a longer fracture length, attempts were 

successfully conducted to orient the fractures to have 

one dominant bi-wing fracture rather than multiple 

fractures. When the pulse fracture is oriented, it can 

be hybridized efficiently with hydraulic fracturing, if 

it becomes necessary.

Thermochemical pulse fracturing was oriented and 

compared with slick water to fracture the 4 × 4 × 4” 

cement block. A coreflood system was used to pump 

Fig. 13  The thermochemical pulse fracturing of the 8 × 8 × 8” cement block in a biaxial frame at 4,000 psi of stress, (a) pretest, and (b) post-test.

Fig. 14  The impact of the increased pulse load on the fracturing behavior.
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fluid and measure the breakdown pressure. When slick 

water was used, the measured breakdown pressure was 

3,000 psi; however, when a thermochemical pulse was 

used, the breakdown pressure was only 700 psi, Fig. 16. 

With slick water, there was no clear fracture, but high 

leakoff, due to the generation of permeable channels. 

On the other hand, with the thermochemical pulse, 

a clear fracture was created and the rock split apart. 

Both tests were conducted without confining stresses.

Conclusions 
In this study, the impact of the pressurization rate and 

the pulse load of thermochemical pulse fracturing was 

modeled. Based on the results achieved, the following 

conclusions can be drawn:

• A novel fracturing method was developed based 

on thermochemical reaction. Application of the 

thermochemical reaction can create a pressure 

pulse sufficient to fracture formations.

• Experimental work showed that a thermochem-

ical induced pulse created multiple fractures in 

cement blocks.

• Numerical modeling was done using finite element 

analysis simulator ABAQUS to investigate the im-

pact of pulse loading and the pressurization rate on 

the induced fractures’ shape and depth.

• A numerical study showed that the higher the pulse 

load, the greater the number of induced fractures. 

Moreover, the shorter the pressurization rate, the 

more the number of induced fractures as well. Frac-

tures vary from one bi-wing fracture to multiple 

bi-wing fractures.

Fig. 15  The impact of the pulse pressurization rate on the fracturing behavior.

Fig. 16  The impact of thermochemical pulse fracturing on breakdown pressure 
compared to slick water.
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• Successfully, pulse fracturing was oriented to con-
tain the energy in a single bi-wing fracture, rather 
than multiple fractures.

•  The breakdown pressure of the cement block was 
76% lower when oriented thermochemical pulse 
fracturing is used, compared to hydraulic fracturing 
with slick water.
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Geologic carbon dioxide (CO
2
) sequestration (GCS) has been considered a promising engineering 

measure to reduce global greenhouse emissions. Real-time forecasting of CO
2
 leakage rates is an 

essential aspect of large-scale GCS deployment. This work introduces a data-driven, physics featur-
ing surrogate model based on a deep learning technique for forecasting CO

2
 leakage rates.

The workflow for the development of a data-driven, physics featuring surrogate model includes 
three steps: (1) Data sets generation: We first identify uncertainty parameters that affect the objective 
of interest, i.e., CO

2
 leakage rates. For these identified uncertainty parameters, various realizations 

are then generated based on Latin Hypercube Sampling (LHS). High fidelity simulation based on a 
two-phase black oil solver within the MATLAB Reservoir Simulation Toolbox (MRST) is run for 
each of the realizations. Data sets, including inputs, i.e., the uncertainty parameters, and outputs 
— CO

2
 leakage rates — are collected. (2) Surrogate development: In this step, a time series surrogate 

model using long short-term memory (LSTM) is constructed to map the nonlinear relationship be-
tween these uncertainty parameters as inputs and CO

2
 leakage rates as outputs. We perform Bayes-

ian optimization to automate the tuning of hyperparameters and network architecture instead of a 
traditional trial and error tuning process. (3) Uncertainty analysis: This step strives to perform 
Monte Carlo simulations using the successfully trained surrogate model to explore uncertainty prop-
agation. The sampled realizations are collected in the form of distributions from which the probabi-
listic forecast of percentiles, P10, P50, and P50, are evaluated.

We propose a data-driven, physics featuring surrogate model based on LSTM for forecasting CO
2
 

leakage rates. We demonstrate its performance in terms of accuracy and efficiency by comparing it 
with ground truth solutions. The proposed deep learning workflow shows great potential and could 
be readily implemented in commercial-scale GCS for real-time monitoring applications.

CO
2
 Leakage Rates Forecasting Using Optimized 

Deep Learning

Xupeng He, Marwah M. AlSinan, Dr. Hyung T. Kwak and Dr. Hussein Hoteit

Abstract  /

Introduction
A promising engineering measure, geologic carbon dioxide (CO

2
) sequestration (GCS), is considered as a 

way to reduce global greenhouse emissions. Various types of reservoirs have been proposed to store CO
2
, 

such as geothermal reservoirs1, depleted oil or gas reservoirs2-4, deep ocean formations5, and saline aquifers6. 
Leakage may occur through faults7, or abandoned wellbores8, 9. Real-time forecasting of CO

2
 leakage rates is 

an essential aspect of large-scale GCS deployment, e.g., quick decision making. High fidelity simulations using 
the multiphase black oil solver would suffer from high computation costs, making it infeasible for practical 
implementation. 

Various analytical or semi-analytical approaches have been proposed in the literature to forecast the CO
2
 

leakage rate. Examples include Viswanathan et al. (2008)10, who proposed a hybrid model for assessing wellbore 
leakage at a geologic CO

2
 sequestration site. Nordboiten et al. (2009)11 provided a semi-analytical model for 

describing CO
2
 migration and leakage, including multiple geological layers and multiple leaky wells. Zeidouni 

(2012)12 developed an analytical model to evaluate leakage rates through a leaky fault to overlying formations. 
Ahmadi and Chen (2019)13 developed an analytical model for determining leakage rate and pressure response 
in CO

2
 sequestration in deep saline aquifers. Qiao et al. (2021)9 proposed a semi-analytical solution to assess 

CO
2
 leakage in the subsurface through abandoned wells. All these models, however, are assumptions or specific 

cases, which limit their broad applicability.

Recent advances in machine learning have inspired many applications in geoscience and petroleum areas. 
Examples include fracture network recognition from outcrops using U-Net14, 15, constructing an equivalent 
continuum model from discrete fracture characterization using a convolutional neural network16, and well data 
history analysis using long short-term memory (LSTM)17. These three deep learning algorithms are commonly 
implemented, designed for image-to-image, image-to-value, and time series problems, respectively. The LSTM 
technique offers an alternative for time series predictions instead of the expensive high fidelity numerical model. 

First, we will review problem formulation, in which the simulation model is detailed. Then, followed by the 
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proposed deep learning workflow, a data-driven and 
physics featuring surrogate model based on LSTM is 
developed for forecasting CO

2
 leakage rates. Next, we 

demonstrate the performance of the proposed work-
flow in results and analyses. Finally, we provide the 
conclusions and future work of this study.

Problem Formulation
Saline aquifers offer great potential for CO

2
 seques-

tration due to their worldwide distribution. In this 
study, we consider injecting supercritical CO

2
 into deep 

saline aquifers. The corresponding physics processes 
are governed by the saturation equation and Darcy 
law. The saturation equation of phase α is given by:

,
S

u Q n w
t

Quuu  1

where ϕ is porosity,  is phase density, S is phase sat-
uration, t is time, u is phase velocity, and Q is phase 
sink/source term. The subscription α denotes the phase, 
where n is for CO

2
 and w is for water.

The velocity u  is described by Darcy law as:

rku K p g zkkrkr  2

where K  is the absolute permeability tensor, k
r
, µ, and 

p are relative permeability, viscosity, and pressure, re-
spectively; g is gravity acceleration, and z is the depth. 
The phase saturations are constrained by:

Sn + Sw = 1 3

And the two pressures are related by capillary pres-
sure, p

c
, function:

Pc(Sw) = pn – pw  4

We use one well, placed down the flank of the model, 
perforated in the bottom layer. Hydrostatic boundary 
conditions are specified on all outer boundaries. The 
simulation model is solved by a two-phase black oil 

solver within the MATLAB Reservoir Simulation 
Toolbox (MRST) framework. A detailed description 
of the implemented solver algorithm can be found in 
Lie (2019)18. The topography of the top surface and 
the geological layers in the model are generated by 
combining the membrane function and a sinusoidal 
surface with random perturbations. 

Figure 1 illustrates the geological model and well 
placement.

We consider a base case with CO
2
 injected into the 

saline aquifer for a period of 50 years and followed by 
the migration of the CO

2
 in a post-injection period of 

450 years. Table 1 summarizes the other related data.

Figure 2 shows the simulation results for the base 
case CO

2
 saturation distributions: (a) at 50 years, and 

(c) at 500 years, (b) the trapping inventory at 50 years, 
and (d) at 500 years — showing only 4% of the total 
injected CO

2
 leakages through the outer boundaries 

during the CO
2
 migration period. 

We observe in Fig. 3 two cross-sections in X/Y 
directions through the well, showing the CO

2
 tends 

to migrate upwards along with the structure, as the 
density of the CO

2
 is lower than the density of water.

Proposed Deep Learning Workflow
A high fidelity simulation, based on a two-phase black 
oil solver, suffers from intensive computation cost, 
making it infeasible for practical implementation, 
e.g., quick decision making. This work introduces a 
data-driven, physics featuring surrogate model based 
on a deep learning technique as an alternative. 

Figure 4 shows the workflow for the development 
of a data-driven, physics featuring surrogate model, 
including three steps. A detailed description of these 
steps follows.

Data Sets Generation

Uncertainty parameters that affect the objective of 
interests, i.e., CO

2
 leakage rates, are first identified. 

Fig. 1  The geological model used in this study showing the well placement.
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Permeability (K) 200 mD

CO
2
 Injection Rate (Q) 6,000 m3/day

Residual CO
2
 Saturation (S

r
) 0.2

Residual Water Saturation (S
w
) 0.1

Porosity (ϕ) 0.2

Fluid Properties
n = 686.54   w = 975.86 kg/m3

μn = 0.056641   μw = 0.30860 cP

Relative Permeabilities [0.2142    0.85]

Injection Period 50 years

Post-Injection (Migration) Period 450 years

Table 1  Relevant data for the base case.

Fig. 2  The base case simulation results: (a) CO
2
 saturation at 50 years, and (c) 500 years, (b) trapping inventory at 50 years, and (d) 500 years.

Fig. 3  CO
2
 saturation profiles (x-slice and y-slice) at (a) 50 years, and (b) 500 years.
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With the identified uncertainty parameters, n
s
, real-

izations are then generated using Latin Hypercube 
Sampling (LHS). High fidelity simulation based on 
a two-phase black oil solver is run for each of the n

s
 

realizations. These simulations are performed using 
open-source MRST18. We then collect the inputs, i.e., 
the uncertainty parameters, and outputs, i.e., CO

2
 

leakage rates, from these simulations.

In this work, the uncertainty parameters and their 
corresponding ranges are listed in Table 2. The first 
four uncertainty parameters are independent and as-

sumed to be uniform distributions. These parameters 
are used to perform LHS to generate data sets. The 
corresponding values of porosity are computed using 
the correlation.

The advantage of using LHS guarantees the data sets 
are distributed in a space filling manner14, 16, 21. Figure 
5 shows the LHS with two different realizations, Figs. 

5a and 5c, 250, and Figs. 5b and 5d, 500. For cases 
with all independent parameters, data points exhibit 
a space filling manner within a 3D space, Figs. 5a 
and 5b. It becomes more obvious with the increasing 
number of realizations. We observe in Figs. 5c and 5d 
clustering effects occur in K – ϕ space as there exist 
specific correlations between permeability and porosity 
— more dominant clustering effects with increasing 
realizations. Subsequently, in the K – Q space, a space 
filling manner still is observed because of independence 
between these two parameters.

Surrogate Development

In this step, a data-driven, physics featuring surrogate 
model based on LSTM will be established to map 
the nonlinear relationship between the uncertainty 
parameters as inputs and time series CO

2
 leakage rates 

as outputs. LSTM, as a variant of a recurrent neural 
network, enables the capture of both short-term and 

Fig. 4  The proposed deep learning workflow, including three steps: (a) Data set generation, (b) Surrogate development, and 
(c) Uncertainty analysis.

Uncertainty Parameters Lower Bound Upper Bound Distribution

Permeability (K) 1 mD 500 mD Uniform

CO
2
 Injection Rate (Q) 6,000 m3/day 12,000 m3/day Uniform

Residual CO
2
 Saturation (S

r
) 0.1 0.3 Uniform

Residual Water Saturation (S
w
) 0.1 0.3 Uniform

Porosity (ϕ) 0.08 0.31 ϕ = 0.082 × K0.216

Range of K from Dai et al. (2013)19.
Ranges of Q, S

r
, and S

w
 from examples of MRST-CO

2
 Lab18.

Correlation between K and ϕ adopted from Chen and Pawar (2019)20.

Table 2  The uncertainty parameters and their corresponding ranges.
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long-term temporal dependency. 

Figure 6 is a diagram of a LSTM building block22. 

The LSTM model requires careful tuning of hyperpa-

rameters and network structure to guarantee accurate 

and robust applicability. The traditional trial and error 

tuning process, however, is exhaustive and expensive. 
Herein, Bayesian optimization23 is implemented to 
automate the tuning process instead of traditional trial 
and error analysis.

Fig. 5  (a) and (b) illustrates cases with all independent parameters, where the data points exhibit a space filling manner within a 3D space;  
(c) and (d) illustrates the dependent parameters showing a dominant clustering effect. (a) and (c) show the LHS with 250 realizations;  
(b) and (d) show the LHS with 500 realizations.

Fig. 6  The diagram of a LSTM building block22.
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Uncertainty Analysis

This step strives to perform Monte Carlo simulations 

using the successfully trained surrogate model to ex-

plore uncertainty propagation. The sampled results 

are collected in the form of distributions from which 

the probabilistic forecast of percentiles, P10, P50, and 

P50, are evaluated. The specific results will be dis-

cussed next.

Before applying the Monte Carlo simulations, we 

conduct blind validation on the Bayesian optimized 

surrogate model to further assess its performance. 

Overfitting issues generally occur, i.e., good perfor-

mance on training samples yet poor predictions on 

validation samples. The following parameters are 

used to evaluate the surrogate model performance 

on validation data set.

• APE: The average of prediction errors, PE, between 

the predicted (denoted by 
Predicted
LeakagedQ ) and ground 

truth ( Truth
LeakagedQ ) CO

2
 leakage rates for validation 

samples at each time step.

100%
Predicted Truth
Leakaged Leakaged

Truth
Leakaged

Q Q
PE

Q  5

1

1 N
ii

APE PE
N

 6

•  PPE: Percentage of PE within an acceptable error 

margin — 10% as threshold in this study.

, 10% 100%where PEN
PPE

N  7

•  RMSE: Root-mean-square error of PE.

2
1

N
ii

PE
RMSE

N  8

where N is the number of time steps.

Results and Analyses
We first collect inputs and outputs from high fidelity 

simulations based on the 250 realizations previously 

mentioned. LSTM coupling with Bayesian optimiza-

tion is applied to obtain the optimized hyperparameter 

values and network architecture instead of the tradition-

al trial and error tuning process. We next demonstrate 

the performance of the optimized surrogate model in 

terms of efficiency and accuracy by comparing it with 

ground truth solutions. Unlike expensive high fidelity 

simulation models, the optimized surrogate models 

significantly improve the computation efficiency, as 

expected. 

Four new cases are selected as blind validation to 

demonstrate its accuracy, Fig. 7, which shows a good 

match between the ground truth and proposed deep 

learning predictions. Note: The dotted lines in Fig. 7 

indicate the end of the CO
2
 injection. We summarize 

the performance of the optimized surrogate model for 

these four cases in Table 3.

To explore the uncertainty propagation behavior, 

5,000 Monte Carlo simulations based on the optimized 

Fig. 7  Blind validation with four new cases between the ground truth and 
proposed deep learning predictions.
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surrogate model are performed. These 5,000 sam-
pled simulation results are collected in the form of 
distributions from which the probabilistic forecast of 
percentiles, P10, P50, and P50, are evaluated, Fig. 8. 
We observe that all P10, P50, and P50 curves exhibit 
two-segment characteristics — the cumulative CO

2
 

leakage increases significantly within the CO
2
 injec-

tion period, yet slightly increases during the 450-year 
migration period. The uncertain ranges provide us a 
rough variability of cumulative CO

2
 leakage under 

the ranges of the uncertainty parameters previously 
shown in Table 2.

Conclusions
This work introduces a data-driven, physics featuring 
surrogate model based on LSTM for time series CO

2
 

leakage rate forecasting in deep saline aquifers as an 
alternative to expensive high fidelity simulation models. 
The main conclusions are summarized as:

• The LSTM enabling to capture of short-term and 
long-term temporal dependency offers a good solu-
tion for time series problems. Specifically speaking, 
the developed data-driven, physics featuring model 
maps the nonlinear relation between these uncer-
tainty parameters as the input and the objective of 

interest, i.e., CO
2
 leakage rates, as output.

• The advantage of using LHS enables data set points 
to be distributed in a space filling manner, which 
guarantees the general applicability of the developed 
surrogate model. The distribution of the data set 
points generated without the guidance of LHS 
generally exhibits clustering effects. The clustering 
effects always lead to unbalanced performance — 
working well for cases within the clustered area, 
yet poor predictions for other areas.

• The quality of data sets significantly impacts the 
quality of the developed surrogate model and 
further its reliability. In this study, high fidelity 
simulations based on a two-phase black oil solver 
are used to generate data sets.

• The Bayesian optimization algorithm is imple-
mented to automate the tuning process in terms 
of hyperparameters and network structure, which 
dramatically outperforms the traditional trial and 
error tuning approach. Special attention is paid to 
the overfitting issue — high accuracy should be 
achieved on both training and validation samples.

• We perform 5,000 Monte Carlo simulations applied 
to the successfully developed model to explore the 

Case 1 Case 2 Case 3 Case 4

APE 5.3% 7.5% 4.2% 7.2%

PPE 94.0% 94.0% 97.0% 95.5%

Table 3  The performance of the optimized surrogate model for the four cases.

Fig. 8  Uncertainty analysis for time series cumulative CO
2
 leakage using 5,000 Monte Carlo simulations applied to the successfully trained 

surrogate model (for illustration purposes, results illustrated every 10 years during CO
2
 injection; every 50 years during CO

2
 migration).
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uncertainty propagation behavior. These 5,000 
sampled simulation results are collected in the form 
of distributions from which the probabilistic forecast 
of percentiles, P10, P50, and P50, are evaluated. 
All P10, P50, and P50 curves exhibit two segment 
characteristics — the cumulative CO

2
 leakage in-

creases significantly within the 50-year injection 
period, yet slightly increases during the 450-year 
migration period.

• We demonstrate the accuracy of the proposed 
workflow by comparing it with ground truth solu-
tions. The proposed deep learning workflow shows 
great potential and could be readily implemented 
in commercial-scale GCS for real-time monitoring 
applications.

Future work could be extended to include more 
complex physics, such as considering capillarity and 
considering more uncertainty parameters that could 
affect the leakage rates. Realistic field cases could be 
adopted to further test the values of the proposed 
workflow. In addition, explainable and stable global 
sensitivity analysis could be performed to explore the 
impact of these uncertainty parameters on the final 
objective of interests.
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Natural gas is sampled or produced throughout the lifespan of a field, including the geochemical 
surface survey, mud gas logging, formation and well testing, and production. Detecting and measur-
ing gas is a common practice in many upstream operations, providing gas composition and isotope 
data for multiple purposes, such as petroleum system analysis, fluid characterization, and production 
monitoring. Well site gas analysis is usually conducted within a mud gas unit, which is operationally 
unavailable after drilling. 

Gas samples need be taken from the field and shipped back to the laboratory for gas chromatogra-
phy and isotope ratio mass spectrometry (GC-IRMS) analyses. To get the results is a time-consum-
ing process and currently lack the resolution needed to fully characterize the heterogeneity and dy-
namics of fluids within the reservoir and the production system. We are developing and testing 
advanced sensing technology to move gas composition and isotope analyses to the field for near re-
al-time and on-site fluid characterization and monitoring.

We have developed a novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor system, 
employing a single interband cascade laser, to measure concentrations of methane (C1), ethane (C2), 
and propane (C3) in the gas phase. The quartz fork detection module, laser driver, and interface are 
integrated as a small sensing box. The sensor, sample preparation enclosures, and a computer are 
mounted in a rack as a gas analyzer prototype for the bench testing for oil industry application. The 
software is designed for monitoring sample preparation, collecting data, calibration, and continuous 
reporting sample pressure and concentration data. 

The sensor achieved an ultimate detection limit of 90 parts per billion (ppb), 7 ppb, and 3 parts per 
million (ppm) for C1, C2, and C3, respectively, for one second of integration time. The detection 
limit for C2 set a record for the QEPAS technique, and measuring C3 added a new capability to the 
technique. The linearity of the QEPAS sensor system was previously reported in the range of 0 ppm 
to 1,000 ppm, which is mainly for trace gas detection. In the study, the prototype was separately 
tested on standard C1, C2, and C3, with different concentrations diluted in dry nitrogen (N

2
). 

Good linearity was obtained for all single components and the ranges of linearity were expanded 
to their typical concentrations (percentage) in the natural gas samples from oil and gas fields. The 
testing of the C1-C2 mixtures confirms that accurate C1 and C2 concentrations in percentage levels 
can be achieved by the prototype. The testing results on C1-C2-C3 mixtures demonstrate the capa-
bility of simultaneous detection of three hydrocarbon components and the probability to determine 
their precise concentrations by QEPAS sensing. 

This advancement of simultaneous measuring the C1, C2, and C3 concentrations, with previously 
demonstrated capability for hydrogen sulfide (H

2
S) and carbon dioxide (CO

2
), and the potential to 

analyze carbon isotopes (13C/12C), promotes QEPAS as a prominent optical technology for gas de-
tection and chemical analysis. The capability of measuring multiple gas components and the advan-
tages of a small sensor, the high sensitivity, quick analysis, and continuous sensing (monitoring) open 
the way to use the QEPAS technique for in situ and real-time gas sensing in the oil industry. 

The iterations of the QEPAS sensor might be applied in a geochemical survey, on-site fluid char-
acterization, time-lapse monitoring of production, and gas linkage detection in the oil industry. 

Development of Optical Gas Sensor for Well Site 
Geochemical Analysis and Time-lapse Monitoring

Dr. Pan Luo, Jonathan D. Harrist, Rabah Mesdour and Nathan A. StMichel

Abstract  /

Introduction
Gas is ubiquitous in a subsurface state, as free gas in a porous space, as adsorbed gas in a kerogen/mineral sur-
face, or dissolved gas in water and oil. Gas is sampled or produced throughout the lifespan of a field, including 
the geochemical surface survey, mud gas logging, formation and well testing, and production. Detecting and 
measuring gas is a basic analysis in the oil industry that provides gas composition and properties for petroleum 
system analysis, formation evaluation, pressure-volume-temperature study, reservoir simulation, production 
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monitoring, safety, and economic evaluation1, 2.

The quartz-enhanced photoacoustic spectroscopy 

(QEPAS) sensor system is an enhanced absorption 

spectrometry for gas sensing. The first QEPAS was 

invented at Rice University and reported in 20023. The 

Jet Propulsion Laboratory (NASA), became involved 

very quickly in the development, mainly for early fire 

warning4, 5. NASA still has an active project for R&D 

and application of the QEPAS sensor in trace gas 

sensing — methane (CH
4
), hydrochloric acid, nitro-

gen oxide, formaldehyde, sulfur dioxide, and carbon 

dioxide (CO
2
) — relevant to spacecraft environmental 

monitoring and advanced life support. 

QEPAS was proposed to the oil industry at the 2008 

Offshore Technology Conference6, 7 for monitoring 

H
2
S, CO

2
, and C1 inside the annulus of flexible risers, 

since the presence of the sour gases can dramatically 

influence corrosion fatigue levels and may cause the 

safety issue in operations. Based on our best knowl-

edge and investigation in the market, the proposal 

has not been applied in the field and commercialized 

in the market.

In the collaboration between Bari University, Rice 

University, and the Aramco Houston Research Cen-

ter8-10, a new generation of QEPAS has been designed 

and prototyped — in the size of a cake box — as a 

portable gas analyzer for multiple hydrocarbon com-

ponents. The sensor box demonstrated the capability 

of the QEPAS technique in measuring concentrations 

of methane (C1) and ethane (C2) at a sensitivity level of 

parts per billion (ppb), and propane (C3) at a sensitivity 

level of parts per million (ppm) by employing a single 

interband cascade laser emitting at 3.345 µm, and the 

potential to detect 12CH
4
 and 13CH

4
 isotopes at a ppb 

level by using a quantum cascade laser operating at 

approximately 7.730 µm. 

This article will strive to introduce the QEPAS tech-

nology to the oil industry, illustrate the realization of 

a QEPAS-based gas analysis and calibration system, 

and summarize bench testing results and performance. 

We will discuss the advantages and limits of the new 

technique and some potential applications in the lab-

oratory and the oil and gas field.

Gas Sensing, Chemical Analysis,  
and QEPAS Technology
There are many types of gas sensors (detectors/

monitors/analyzers), which are mainly categorized 

based on the detection technology into four groups: 

semiconductor, electrochemical, analytical (gas chro-

matography (GC), spectrometry), and laser optical 

absorption sensor11. In the oil industry, for operational 

safety, infrared point and catalytic bead (pellistor) are 

two major sensing techniques used for combustible (hy-

drocarbon) gas, and an electrochemical  sensor is used 

for H
2
S detection and warning. These sensors usually 

detect single gas component/species in ambient air, 

suffering from drift, cross-response to other gases, and 

changing humidity levels12. These semiconductor and 

electrochemical sensors are not made for quantification 

purposes, i.e., downhole applications, in a flow line, 
and laboratory analytics environment. 

In drilling, exploration, reservoir characterization, 
and production monitoring, fluid (gas) samples are taken 
from the drilling mud, reservoir formation, wellhead, 
or separator, and usually injected into GC connecting 
with alternative detectors for chemical composition 
analysis. The most commonly used detectors are a 
flame ionization detector (FID) for hydrocarbons, and 
a thermal conductivity detector (TCD) for non-hydro-
carbon gases (e.g., nitrogen (N

2
), CO

2
, H

2
S, oxygen, 

hydrogen, helium, and argon)1, 13. 

Recently, a quadrupole mass spectrometer (QMS) 
was developed for rapid and direct analysis of C1 to 
C10 hydrocarbons and common inorganic species in 
mud gas logging14. Isotope ratios, e.g., 13C/12C, D/H, 
of each gas component — as geochemical fingerprints 
— commonly are determined by GC connected with 
isotope ratio mass spectroscopy (GC-IRMS)15. These 
are quite large and delicate instruments, requiring sta-
ble and strict laboratory conditions and sophisticated 
experts for operation and maintenance. Consequently, 
such high precision laboratory analyzers — GC/MS/
IRMS — are incompatible with a tough and dynamic 
downhole environment and well site conditions. 

Transporting field fluid samples to a laboratory pro-
vides delayed, sparse, and sometimes unrepresentative 
data, which does not help in near real-time and high 
economic value decisions during drilling, formation/
well testing and on-site troubleshooting16, 17. In addi-
tion, the sampling, transporting, sample preparation, 
and routine laboratory analysis are expensive opera-
tions, which are not pragmatic to be used to generate 
high-resolution/time-lapse data for fluid heterogeneity 
and dynamics studies. 

Laser-based optical absorption technology offers a 
non-contact, fast response, minimal drift, high spec-
ificity, low maintenance requirement, and continuous 
monitoring for gas detection and chemical analysis12, 

18, 19. Several techniques, based on the Beer-Lambert 
Law, measuring the optical adsorption at a specific 
wavelength are developed, including non-dispersive 
infrared, spectrophotometry, tunable laser absorption 
spectroscopy/tunable diode laser absorption spec-
troscopy (TDLAS), cavity ring down spectroscopy 
(CRDS)/cavity enhanced absorption spectroscopy 
(CEAS)/integrated cavity output spectroscopy (ICOS), 
and photoacoustic spectroscopy (PAS). There are pros 
and cons associated with the optical sensors based on 
the different mechanisms of excitation and sensing 
and their applications.

PAS, based on the photoacoustic effect discovered 
by Alexander Graham Bell in 1880, is an indirect op-
tical absorption technique. PAS does not require an 
optical detector and its responsivity is laser wavelength 
independent. 

Figure 1 shows that when the laser output is absorbed 
by a target gas, the absorbed laser energy at charac-
teristic wavelengths induces heat and expansion to 
create a vibration of gas molecules at the resonant 
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frequency, subsequently resulting in the generation of 

an acoustic wave. The wave can be transduced by a 

microphone to an electrical signal that is proportional 

to the concentration (mol%, vol%) of the target gas. 

QEPAS is an improved approach to photoacoustic 

detection of trace gas by replacing the microphone 

with a piezoelectric quartz tuning fork (QTF) as a 

sharply resonant acoustic transducer to detect weak 

photoacoustic excitation, allowing the sensor to be 

made in an extremely small size11. 

Among the main optical sensors, QEPAS has been 

proven to be a leading-edge technique for out-of-lab-

oratory detection for trace gas, because of extremely 

high sensitivity, down to a ppb/ppt level of compact-

ness, immunity to environmental noise, its proven 

reliability — ruggedness — and in situ operation9, 11, 

20-22. QEPAS does not require an optical detector as 

it reaches high detection sensitivity within the short 

optical path length, and it is insensitive to the wave-

length. These factors represent the main advantages 

with respect to other laser-based techniques, such as 

TDLAS, CRDS, CEAS, and other multiple pass-based 

spectroscopy11, 12. The core part of a QEPAS sensor 

— the QTF — is actually very small and the whole 

sensor could be made very compact, e.g., fitting into 

a 2” internal diameter pipe for downhole operations8. 

The QEPAS showed high frequency stability of the 

QTF’s resonance with frequency shifts of ~0.04 ppm/

T2 in the temperature range from -40 °C to 90 °C, sug-

gesting the sensor may operate in a large temperature 

range10. In addition, the QEPAS can detect multiple 

gas species and their isotopes10, 23, and the number of 

gas components that QEPAS can detect is increasing 

and the performance of QEPAS analysis (precision, 

detection limits, integration time, etc.) is continuously 

improving11, 24. Therefore, the QEPAS may overcome 

the disadvantages previously mentioned for conven-

tional gas sensors and laboratory-based instruments, 

and be applied in the oil and gas field for in situ and 

real-time gas detection and chemical analysis.

QEPAS Gas Analyzer System
A QEPAS sensor with a S-QTF, using a single in-

terband cascade laser operating in the spectral range 

3.342 µm to 3.349 µm, was integrated in a portable 

box (5.2 × 9.8 × 9.8”), Fig. 2a. The QEPAS is very 

sensitive to trace hydrocarbon gas, down to the ppb 

level. To analyze hydrocarbon compositions — ppm to 

percentage level — of natural gas from the oil industry, 

the gas sample needs to be diluted. We developed the 

components for sample drying, quantitative mixing 

(dilution) and handling the common gas samplers (cyl-

inder and isotube) used in the industry. All components 

were mounted in a rack, Fig. 2b, as a prototype of the 

gas analyzer for bench testing. 

Figure 3 shows the diagram of the prototype system, 

which consists of five major components: (1) sample 

introduction enclosure, (2) sample mixing enclosure, 

(3) sample drying enclosure, (4) QEPAS and laser 

controller enclosure, and (5) a PC with the QEPAS 

specific software. 

The system was designed to meet the following de-

sign parameters: (1) measuring major hydrocarbon 

gas components in typical concentrations in a natural 

gas field (C1: 70% to 100%, C2: 1% to 10%, and C3: < 

2%), (2) being tolerant of N
2
 in the sample, (3) handling 

common gas cylinders, including isotube, (4) preparing 

a gas sample that needs to be diluted with dry N
2
 and 

dehumidified to the level of water vapor — less than 

300 ppm; and (5) calculating and reporting the gas 

concentrations, ratios of hydrocarbons, and sample 

pressure.

Sample Introduction

The QEPAS prototype system can be connected to a 

gas cylinder or an isotube through the sample intro-

duction enclosure. The gas sampler must be pressured 

to 80 psi to provide a driving force for a gas sample to 

fill the sensor chamber.  

Gas Mixing Enclosure

The gas mixing enclosure takes in the gas sample 

Fig. 1  A diagram showing the principal of PAS for gas detection and the use of a QTF to enhance the photoacoustic spectroscopy. Modified 
from Sampaolo et al. (2019)9 and Patimisco et al. (2014)11.
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from the sample introduction panel and mixes one 
part with nine parts of N

2
. The QEPAS needs a gas 

sample to be diluted to avoid too high concentrations 
to be out of the calibration range. This enclosure uses 
a commercially available gas blender to mix gas from 
the sample port with N

2
 from an external cylinder.

Gas Drying Enclosure

The gas sample needs to be dried before entering the 
QEPAS chamber to minimize the effect of moisture on 
the detection. The drying enclosure uses a monotube 
dryer to dehumidify gas samples down to 300 ppm of 
water vapor. The monotube dryer uses a Nafion tube 
to transfer moisture from the sample line to a purging 
line surrounding the Nafion tube.

QEPAS Sensor with Laser Controller 

The QEPAS measures the absorption of a gas sample 
using a tunable laser as a light source. The laser fre-
quency is switched on and off on an absorption peak 
of the gas of interest, causing that gas to expand and 
contract with the switching frequency. This vibration 
of the gas is detected with a QTF, which has a reso-
nance frequency equal to the switching frequency. The 
amplitude of the signal from the QTF is proportional 
to the gas concentration.  

The QEPAS sensor consists of a QTF in the probe 
chamber for detection, a mid-infrared interband cas-
cade laser as an excitation source, and an integrated 
printed circuit board to collect the data. An acoustical 
detection module houses the QTF and the cylindrical 
resonator. It is mounted on a 5° of freedom optical stage 
with three translation stages and two rotation stages. 
The laser module can also be adjusted in the vertical 
direction and has a collimation lens and a focusing 
lens; both of the lens positions can be adjusted with 
setscrews. The acoustical detection module must be 
further optimized by using the QEPAS scan feature 
in the QEPAS software to minimize the ratio mass 
spectrometry noise.

QEPAS Software

Two programs are developed for operating the QEPAS 
gas analyzer. The first program was developed by the 
Aramco Houston Research Center for monitoring the 
sample preparation system. The second program was 
developed by Bari University to control the sensing 
and to process data.

Laboratory Testing, Calibration, and 

Performance
The QEPAS sensor box was previously tested with 

standard gases of individual components of C1, C2, 

and C3, diluted by N
2
 into a series of concentrations 

— 1 ppm to ~1,000 ppm9, 10. The testing obtained good 

linearity of the QEPAS signal with the concentration 

of each individual component in the range, Table 1. 

Allan deviation analysis showed that for one second 

of integration time the detection limit for C1, C2, and 

C3 is ~90 ppb, ~7 ppb, and ~3 ppm, respectively. 

The detection limit achieved for C2 was a record for 

the QEPAS technique, and measuring C3 added a 

new capability to the technique. These limits are well 

Fig. 2  The realization of a QEPAS-based gas analysis system: (a) The portable 
QEPAS sensor box, and (b) All the components of the QEPAS assembled 
in a rack.

Fig. 3  The enclosures and sample line for the QEPAS gas analyzer system.
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below the sensitivity needed for a sensor striving for 
hydrocarbon detection in the petroleum exploration 
and engineering business, where concentrations of 
hydrocarbon gases are expected to be generally much 
above the ppm scale (usually percentage). C1-C2 and 
C2-C3 mixtures were also tested in the studies9, 10 
to demonstrate the capability of detecting multiple 
hydrocarbons by QEPAS.

In the study, we tested the QEPAS gas analyzer sys-
tem, including the sensor box and new components 
of sampling preparation, with enlarged concentration 
ranges for individual C1, C2, and C3 that are typically 
encountered in natural gas samples from oil and gas 
fields for linearity assessment. Then we tested a series 
of C1-C2 and C1-C2-C3 mixtures and first confirmed 
that the QEPAS can simultaneously measure C1, C2, 
and C3 concentrations in the three hydrocarbon com-
ponent gases.

Single Component (C1, C2, C3) Testing

Standard C1, C2, and C3 gases with certified concen-
trations, and high purity (99.9999%) N

2
 were used to 

prepare artificial gas samples in the testing. Each single 
standard gas was diluted using the N

2
 into different 

concentrations that may be encountered in natural 
gas samples from oil and gas fields. The mixing and 
quantitative dilution process is conducted in the gas 
mixing enclosure of the QEPAS system. 

The C1 was diluted in a very large concentration range 
from 10% to 100% for the variation of C1 concentration 
in oil associated gas (least C1), condensate, wet gas, 
dry gas, or biogenetic gas (predominated C1)2. The C2 
and C3 were diluted in the range of 1% to 10%, and 
0.2% to 2%, respectively. 

Testing was performed across the range of concentra-
tions for each single gas component. Two samples taken 
at each target concentration were analyzed to check 
the reproducibility. Figures 4 to 6 show the waveforms, 
QEPAS signals, and linearity for the testing on C1, C2, 

and C3, respectively. For C1, there are two diagnostic 

peaks at 55 mA and 62 mA in the waveforms, Fig. 4. 

The 55 mA peak is only used to determine the presence 

of C1, and the 62 mA peak is used to correlate the con-

centration of C1, because there is interaction between 

C1, C2, and C3 for 55 mA during the measurement 

when the gasses are mixed. The calibration curve of 

62 mA, Fig. 4, illustrates a very good linearity for C1 

in the range of typical concentrations in natural gas 

samples from an oil and gas field, and will be used to 

calculate the C1 concentration.

This process was repeated for C2 and C3 to identi-

fy the component, evaluate the linearity, and obtain 

calibration curves for calculating the concentrations. 

A linear fitting procedure used in the software to re-

trieve C1, C2, and C3 concentrations from the QEPAS 

spectra were reported9. The testing on single com-

ponents has ensured that the system performs good 

linearity relations between the QEPAS response and 

the concentrations (percentage level) of individual C1, 

C2, and C3 gases.

C1-C2 and C1-C2-C3 Gas Mixtures Testing

While the detection of C1 and C2 characterized by 

well-defined absorption peaks in the interband cascade 

laser operating range is straightforward, the detec-

tion of C3 requires the extraction of the characteristic 

broadband absorption profiles, which merge with the 

C2 background signal in the interband cascade laser 

tuning range. Previous studies showed no cross-talk 

between C1 and C2 in the testing of the C1-C2 gas 

mixture, and developed a fitting procedure with a linear 

combination of reference spectra to retrieve C2 and C3 

concentrations in the testing of the C2-C3 mixture9, 10. 

The QEPAS software used in our testing employed the 

procedure to calculate the C3 concentration. 

Two component (C1-C2) and three component (C1-

C2-C3) gas mixtures were used in the testing to eval-

uate the precision and linearity of the detection of 

CRDS1 TDLAS2 QEPAS Reference

C1 C2 C1 C2 C1 C2 C3

Precision 30 ppb 10 ppb 300 ppt 50 ppt 90 ppb 7 ppb 3 ppm

Response 
Time

< 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s

Linearity 
Range

1 – 5,000 
ppm

0 – 500 
ppm

0 – 100 
ppm

0 – 50 
ppm

0 – 1,000 ppm 0 – 1,000 ppm 10 – 1,000 ppm 10

Linearity 
Range

4 – 1,000 ppm 2 – 100 ppm 200 – 1,000 ppm 9

Linearity 
Range

100,000 
– 1,000,000 
ppm (10% 
– 100%)

10,000 
– 100,000 ppm 

(1% – 10%)

2,000 – 20,000 
ppm (0.2% – 2%)

This Study

1Picarro G4302 GasScouter
2Aerodyne Mini Trace Gas Monitor

Table 1  The performance comparison of QEPAS with representative optical sensors for hydrocarbon gas detection (after Sampaolo et al. 
(2020))10.
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multicomponent gas by the QEPAS system. Certified 
C1, C2, and C3 gases, respectively, with a 10% con-
centration balanced to N

2
, were diluted by pure N

2
 in 

the gas mixing enclosure to make gas samples in the 
representative range as observed in the field — C1: 70% 
to ~100%, C2: 2% to ~10%, and C3: 0.4% to ~2%. 
Their actual concentrations and QEPAS measured 
values are compared and shown in Table 2 and Fig. 7 
for the C1-C2 mixture, and Table 3 and Fig. 8 for the 
C1-C2-C3 mixture.

For the C1-C2 mixture, the measured C1 and C2 
concentrations are very close to their actual values, 
showing good linearity with R2 > 0.99, Figs 8a and 8b. 
The C1/C2 ratio, which is commonly used as a proxy 
of gas dryness and a geochemical fingerprint2, shows 
good linearity as well, R2 > 0.99, Fig. 8c, but with a 

deviation when C1 presented the highest concentration 
(98%) and C2 presented the lowest concentration (2%) 
in the tested samples. 

We first reported the results of simultaneous detection 
of C1, C2, and C3 in gas mixtures using the QEPAS 
technology. As previously shown in Fig. 8 for the C1-
C2-C3 mixture, all comparisons between the actual 
and measured data demonstrate good linearity (R2 
> 0.9899), with only the C1 concentration showing 
a relatively big variation (R2 = 0.977). There is good 
fitting for C2, however, an overestimate of the C1 con-
centration at its high concentration, e.g., measured 96% 
vs. actual 93%, and a shift for C3 — underestimat-
ed in the whole tested range — in the measurement. 
Obtaining accurate concentrations for individuals in 
a gas mixture consisting of a homologous series, e.g., 

Fig. 4  The sweep waveforms and calibration peaks for C1 testing.

Fig. 5  The sweep waveforms and calibration peaks for C2 testing.

Fig. 6  The sweep waveforms and calibration peaks for C3 testing.
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hydrocarbons, is much more challenging than dealing 

with single or double components10, 23. 

The good correlation and linearity between all mea-

sured gas concentrations and ratios, and their actual 

values, suggest that an improved algorithm and fitting 

procedure may generate more accurate results. Several 

aspects will be pursued to enhance the performance 

of the QEPAS system: (1) Quantitative control in the 

gas mixing enclosure, (2) Selective waveform features 

for better defining C3 in the background with C1 and 

C2, (3) Testing in a larger concentration range for C2 

and C3 to have a more dynamic calibration curve, and 

(4) Trying multivariate analysis and machine learning 

methods to optimize the procedure to calculate gas 

concentrations in the mixture. 

Currently, we suggest using the ratios of C1/

(C1+C2+C3) as a dryness parameter/geochemical 

fingerprint in the application of the QEPAS system; 

because the gas ratio as a procedure of normalization 

eliminates the error and demonstrates better results 

than direct use of the concentrations, Figs. 8d and 8f.

Conclusions and the Way Forward
QEPAS is a novel laser-based optical absorption 
technology for gas sensing and chemical analysis. 
The technology is versatile in detecting trace gas and 
measuring concentrations and isotopic compositions 
of multiple gas components8, 25, 26. Recent advances 
has demonstrated the features of the QEPAS sensor11, 

20-22, 24, including a high-level of compactness, extreme 
high sensitivity (down to ppb/ppt), immunity to en-
vironmental noise, insensitivity to wavelength, the 
potential for continuous monitoring, overall reliability, 
and ruggedness for in situ operations. 

QEPAS’s main advantage is as a multicomponent gas 
detection and quantitative analyzer over semiconduc-
tor and electrochemical sensors. Currently, QEPAS 
cannot measure the extensive gas species for their 
concentrations and isotopic compositions in natural 
gas samples like the analytic instruments, e.g., GC-
FID/TCD, QMS, and IRMS. The optical sensor is 
much smaller and relatively cheaper, requiring less 
maintenance and offering quicker analysis with higher 
sensitivity than the laboratory-based instruments.

C1 (%) C2 (%) C1/C2 (%)

Mixture # Actual Measured Actual Measured Actual Measured

1 98 98.0 2 1.8 49 54.4

2 95 94.7 5 4.6 19 20.6

3 90 88.2 10 10.0 9 8.8

4 90 90.4 5 4.6 18 19.7

5 80 81.5 10 10.0 8 8.2

6 80 81.9 5 5.1 16 16.1

7 70 70.4 10 10.0 7 7.0

8 70 70.6 5 5.2 14 13.6

Table 2  The gas concentrations (%) and ratios of the C1-C2 mixture in the bench testing.

Fig. 7  A comparison of the actual and measured gas concentrations and ratios in the bench testing of the C1-C2 mixture.

54779araD6R1.indd   34 2/14/22   10:32 PM



35 The Aramco Journal of TechnologySpring 2022

C1% C2% C3%

Mixture # Actual Measured Actual Measured Actual Measured

1 93 96.0 2 2.0 1 0.7

2 90 91.6 8 8.1 0.4 0.2

3 90 92.5 5 4.5 1 0.6

4 85 84.3 10 10.0 1 0.7

5 80 80.6 10 10.0 2 1.6

Table 3  The gas concentrations (%) and ratios of the C1-C2-C3 mixture in the bench testing.

C1/C2 C1/(C2 + C3) C1/C1+C2+C3)

Mixture # Actual Measured Actual Measured Actual Measured

1 46.5 48.0 31.0 35.6 0.97 0.97

2 11.3 11.3 10.7 11.0 0.91 0.92

3 18.0 20.6 15.0 18.1 0.94 0.95

4 8.5 8.4 7.7 7.9 0.89 0.89

5 8.0 8.1 6.7 6.9 0.87 0.87

Fig. 8  The comparison of the actual and measured gas concentrations and ratios in the bench testing of the C1-C2-C3 mixture.
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There are pros and cons for QEPAS in contrast 

to other optical absorption techniques, e.g., CRDS, 

ICOS, and TDLAS. Comparing technical spec-

ifications and performance is beyond the theme of 

the article. There are two advantages presented by 

QEPAS among the optical sensing techniques: (1) The 

capability to measure C3 concentrations as shown in 

the study, and (2) extremely high sensitivity in short 

optical pathlengths11. 

With its beneficial features and advantages, QEPAS 

has been proposed for field applications in monitoring 

sour gases (H
2
S, CO

2
) in offshore risers6, downhole gas 

analysis8, 10, early fire5, leak detection, and health, safety, 

environment monitoring26. A typical QEPAS sensor 

system can be compacted in a small lightweight size, 

supporting the deployment of the sensor in a portable 

analyzer, a downhole tool, and an unmanned aerial 

vehicle (UAV)21, 27. Several applications of QEPAS in 

real-world use have already been reported28, including 

carbon monoxide detection in urban areas, monitor-

ing of CH
4
 in landfills, and leak detection of sulfur 

hexafluoride in a vacuum-seal test station for diesel 

engine injectors.

In the study, we developed and tested a QEPAS-based 

hydrocarbon gas analysis system. The QEPAS sensor 

is very sensitive for hydrocarbon gas detection — ppb 

to 10 ppm level. The sensor is not suitable for direct 

analyzing of a natural gas sample with hydrocarbon 

components in the ppm to percentage level. We integrat-

ed enclosures for introducing gas, mixing, and drying 

with a novel QEPAS sensor reported recently9, 10 in a 

rack, and developed the software for monitoring the 

sample preparation. We have developed a new QEPAS 

prototype for detecting trace hydrocarbon gas — C1, 

C2, and C3 — and measuring their concentrations 

for oil industry samples by quantitative dilution and 

optical sensing. 

The prototype system was tested with C1, C2, and C3 

single components and C1-C2 and C1-C2-C3 mixtures, 

with a series of concentration gradients that are typically 

encountered in natural gas samples from oil and gas 

fields. The testing on the single components show that 

the system performs good linearity relations between 

QEPAS response and concentrations of individual C1, 

C2, and C3 gases in percentage levels, which expands 

the linearity range of the QEPAS detection from ppm 

to percentage range. The testing on the C1-C2 mixtures 

confirms that accurate C1 and C2 concentrations in 

percentage level can be achieved by the system. 

We report here the testing results on C1-C2-C3 

mixtures for the first time, demonstrating the capa-

bility of simultaneous detection of three hydrocarbon 

components and the probability to determine their 

precise concentrations by QEPAS sensing. Although 

there are some deviations of the measured C1%, C3%, 

and C1/(C2+C3) ratio compared to actual values, all 

measured concentrations and gas ratios illustrate good 

linear correlation with actual values, suggesting that it 

is highly possible to generate more accurate results by 

improving calibration curves and the fitting procedure. 

The steps for the development and applications 
of QEPAS technology in the oil industry will be: (1) 
Testing natural gas samples and developing the fit-
ting procedure to determine gas concentrations and 
isotopic compositions in the real samples (complex 
mixture), (2) Integrating a CO

2
 and H

2
S sensor with 

the hydrocarbon gas sensor in a compact device, (3) 
Reducing the size and increasing the robustness for 
field deployment, and (4) Developing the applications 
of on-site gas analysis while drilling, testing and pro-
duction, offered by the advanced sensing, to support 
real-time decision making and time-lapse operation.
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A new approach to the inversion and joint inversion of geophysical data is described. We take advan-
tage of the domains of local optimization and of the machine learning or deep learning technique to 
generate efficient optimization schemes to reduce uncertainties in the model parameter estimations, 
exploit the image segmentation capability of deep learning techniques, and guarantee compliance 
with the requirement of physics for the wave propagation. 

The domains of physics-driven optimization, based on data misfit functionals, and of deep learning 
optimization, based on model misfit (loss), are coupled by multiple penalty functions imposed on the 
common model term of the physical domain such as performed in a joint inversion approach. The 
procedure is complemented by network retraining with partial inversion results to augment the net-
work knowledge base and enable more physics oriented deep learning predictions. 

After several iterations, the procedure tends to converge to models satisfying both physics and deep 
learning optimization schemes by providing at the same time better resolution and accuracy in pa-
rameter estimation. The developed method is demonstrated on synthetic and field transient electro-
magnetic (EM) data.

A Framework for Coupled Physics Deep Learning 
Inversion and Multiparameter Joint Inversion

Dr. Daniele Colombo, Dr. Ersan Turkoglu, Dr. Weichang Li and Dr. Diego Rovetta

Abstract  /

Introduction
Machine learning or deep learning applied to inverse problems is a growing area of interest. The expectations 
are for quickly mapping the data domain into the model space by adopting purely data-driven approaches, 
avoiding typical simplifications of the problem such as linearization, and obtaining robust and higher resolu-
tion descriptions of the model parameters. Such expectations, based on initial demonstrations performed on 
statistically well-behaved distributions of synthetic models and associated data, have quickly shown limitations 
when applied to field data. 

Several authors1-3 reported disappointing results when deep learning predicted resistivity models were used 
for simulating the propagation of electromagnetic (EM) wavefields for time-domain or frequency-domain 
applications such as logging while drilling or near surface characterization with transient electromagnetics 
(TEM). Such observations have induced various researchers to invoke the introduction of physics in the 
training and derivation of the neural network (NN) models2, 4. Recent and ongoing research is in the direction 
of introducing physics in the derivation of machine learning surrogate inversion schemes.

Physics informed NN schemes1, 5, 6 introduce physics constraints in composite loss functions to act as reg-
ularization mechanisms toward nonphysical solutions for the derivation of the network parameters. Such 
schemes, while steering the NN predictions in a physics compliant direction, are bounded by the initial choice 
of the model space used for training and do not enable the network to evolve and adapt toward different data 
distributions previously unseen by the network. 

To overcome typical limitations in the application of machine learning techniques to real world geophysical 
inversion applications, the adopted machine learning/deep learning schemes should become compliant to the 
physics requirements, and should enable automatic expansion of the network knowledge base. This would 
allow the refinement of the corresponding predictions for model distributions different from those used in 
the initial training. The latter requirement will in turn enable the use of small training sets, an important 
requirement in geoscience and engineering applications where the collection of vast training sets is typically 
costly, time-consuming, or intensive from the computing side. 

The scheme proposed by Colombo et al. (2021)3, described and expanded in the present contribution, is 
addressing the above problems through an iterative and coupled physics deep learning inversion (PhyDLI) 
scheme involving dynamic network retraining for expanding its knowledge base.

Method
Figure 1 shows the general framework of a coupled PhyDLI for single or multiple parameters subject to reg-
ularization by means of penalty functions applied to the model term. Considering a multiparameter model 
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space, the model vector is described by m = [m
1
, m

2
, 

…, m
M

] where for the geophysical domain we may 

consider, e.g., P-wave velocity, resistivity, and density, 

among other possible parameters. The corresponding 

data space is defined by the vector d = [d
1
, d

2
, …, d

N
], 

containing the observed data, e.g., traveltimes/wave-

forms, TEM dBz/dt magnetic field responses, gravity 

acceleration, etc. The PhyDLI composite objective 

function contains data misfit and model misfit with 

penalty terms that can be written as:

 , 1

where ϕ
d
(m) is defined as:

 2

where d
abs

 is the vector of the observed data, G is the 

Jacobian, and W
d
 is a data weighting matrix (and W T

dWd 

the equivalent inverse covariance). The deep learning 

objective, i.e., loss, function ϕ
l,m

 is defined as:

 , 3

where the pseudoinverse operator  is parameterized 

by θ. The optimization of the network parameters, θ, 

is performed offline during the training phase using 

training models, m
t
, and predicted models associated to 

the data responses, d
t
. The optimized network is then 

applied during the testing phase to observed data, d
obs

, 

for predicting the physical domain model parameter 

distributions and obtaining m
l  
(online phase):

 . 4

A penalty term linking the two inversion domains 

and based on the common (physical) model term, m, 

can be written as: 

 , 5

where m
l
 represents the model prediction (Eqn. 4) 

obtained during the online phase and W
m
 is the model 

covariance matrix. Additional penalty terms can be 

borrowed from joint inversion schemes to be based on 

structure ϕ
x
 or compositional ϕ

rp
, e.g., rock physics, 

operators7. Structure operators for two models (i, j ) 

are based on cross-gradients8:

 , 6

or summative gradients9: 

  7

where h = ±1 is the correlation sign, and ε is a damping 

parameter. The difference between the structure cou-

pling terms is that cross-gradients, Eqn. 6, constrain 

the general direction of the gradients regardless of the 

respective polarity, i.e., sign, while summative gradi-

ents, Eqn. 7, consider the polarity, i.e., correlated vs. 

anticorrelated distributions, allowing the injection of  

more constraints into the solution. The compositional 

operator, ϕ
rp

, is a generic nonlinear function, f
rp

, relating 

the parameters of two models (i, j ), such as: 

 8

where  is an estimate of the model m
j
. Structure 

operators can be used to exploit the image segmenta-

tion capability of deep learning, thereby encouraging 

the resemblance of the shape of the model parameter 

distributions while compositional operators are ex-

pected to become valuable for multiple physical pa-

rameter optimizations. Finally, weights, µ, are used 

to balance the contributions of the different terms in 

the composite objective function. As per typical joint 

inversion schemes, the setting of weights is facilitated 

by the application of appropriate normalizations to the 

objective function terms10. 

The objective function in Eqn. 1 is solved by alternate 

minimizations, yielding:

Fig. 1  General framework of a coupled PhyDLI for single or multiple parameters.
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 9

for the physics domain, and:

 , 10

for the deep learning domain. The optimization of 

the physics procedure is performed with second order 

differential operators and the deep learning inversion 

with second order or first order stochastic gradient 

descent methods depending on the number of param-

eters involved in the backpropagation process. The 

procedure is complemented by network base augmen-

tation utilizing the inversion models and corresponding 

forward responses. An optional aspect is the use of 

deep learning predictions as prior models for physics 

inversion other than for penalty.

Synthetic Test
The procedure is demonstrated with a synthetic test 

using TEM data and a feedforward network consisting 

of an input layer, a single hidden layer of 30 neurons, 

and an output layer. Use of a deeper NN model pro-

vided equivalent results. Two sets of 1D models are 

randomly generated to represent statistically different 

distributions in the model space, Table 1 and Fig. 2, 

which are called Training, a data set used for training 

and optimizing the network parameters, and Alien, a 

data set for testing the network prediction capability 

on previously “unseen” data. The goal is to combine 

results from the Alien inversion using the scheme in 

Fig. 1 to iteratively augment the initial Training set, 

retrain the NN model and steer new predictions toward 

physics compliant models. We applied the schemes 

where the NN prediction is used as prior and penalty 

at the same time.

The results of the PhyDLI process (cycles) are dis-

played in Table 2 and Fig. 3. The prediction from the 

initial Training set shows slightly higher model root 

mean square (RMS) and better data RMS than starting 

the inversion from a half space of 10 Ωm. The Training 

set inversion results are slightly worse than the half 

space inversion and representation of the density cross 

plot of the true and predicted parameters, Figs. 3a and 

3b, show that the results are still far from the diagonal.

After the repetition of the PhyDLI procedure where 

the partial inversion data, i.e., 10th iteration, are used 

to retrain the NN, the corresponding predictions and 

inversion results provide much smaller residuals for 

both model and data and the corresponding density 

cross plots align better along the diagonal value. Figure 

4 shows the evolution of the model space during the 

PhyDLI process.

Field Data
A test of the PhyDLI scheme is performed on field 

TEM data acquired in an arid environment with dry 

fluvial channels (wadi ). The TEM soundings were 

acquired with a grid of 240 × 240 m for characterizing 

the near surface and enhancing the shallow velocity for 

seismic imaging. The same Training distribution was 

used for the initial NN predictions and progressively 

augmented with additional inversion results after each 

PhyDLI cycle. In this case, we tested a scheme where 

the NN predictions are used only as penalty terms, 

Fig. 1, and not as prior models at each cycle. 

A half space inversion was performed and used as a 

benchmark while the PhyDLI procedure was run five 

times to achieve a large data RMS misfit improvement 

corresponding to 90% from the initial RMS and a 

Data 
Set

NN 
Models

Resistivity 
Mean 
(Ωm)

Resistivity 
Standard 
Deviation 

(Ωm)

Training 5,000 31.6 2.5

Alien 5,000 5.6 1.8

Table 1  Characteristics of the Training and Alien data sets.

Fig. 2  The Training and Alien data sets: (a) Model space distribution, and (b) data responses represented as apparent resistivity.
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smaller data RMS residual when compared to the 

half space inversion. 

Figure 5 displays the final resistivity prediction from 

the NN model compared to the geomorphological fea-

tures shown by the elevation map. The cross section in 

Fig. 6 displays a standard half space inversion with the 

final PhyDLI results, displaying a sharper definition 

of the expected geological layering.

Conclusions
We have demonstrated a novel scheme for coupled 

PhyDLI. Such an approach combines the benefits of 

highly accurate and physics-driven second order local 

optimization schemes with the pseudo-stochastic and 

nonlinear machine learning/deep learning inversion 
schemes. The approach is addressing a common 
problem in geophysical applications represented by 
the scarcity of labeled data to be used for training 
NN, which in turn, prevents the derivation of highly 
accurate pseudo-inverse operators. 

The PhyDLI schemes compete and collaborate at 
the same time to obtain a range of models that could 
be potentially used to infer parameter error estimates 
and reduce the risk of ending the inversion in local 
minima. After several iterations, the two procedures 
embedded in PhyDLI converge to commonly agreeable 
models that outperform individual inversion schemes. 
The extension to multiparameter joint inversion is 

Predictions Prior and 
Penalty

Modified RMS 
Prediction

Data RMS 
Prediction

Modified RMS 
Inversion

Data RMS 
Inversion

0 HS 0.32 11.23 0.230 0.590

A TR 0.39 7.83 0.340 0.660

B TR + HS 0.20 2.62 0.192 0.299

C TR + HS + Bi 0.179 1.56 0.175 0.213

D TR + HS + Bi + Ci 0.174 1.02 0.171 0.172

E TR + HS + Bi + Ci + Di 0.177 0.86 0.174 0.184

F TR + HS + Bi + Ci + Di + Ei 0.174 0.74 0.171 0.175

Table 2  The PhyDLI performance on the Alien data set (HS = half space; TR = initial Training set; Bi, Ci, etc. = partial inversion results from a 
previous cycle).

Fig. 3  The prediction and inversion performances over different cycles of  
PhyDLI (40th iteration): (a) and (b) “A” cycle, and (c) and (d) “F” cycle  
(see Table 2).

Fig. 4  The model space evolution from the PhyDLI process: 
(a) Evolution of the network predictions with 
reference to the true distributions, and (b) parameter 
distributions from the inversion process.
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straightforward, a domain we plan to analyze in future 

studies. The devised procedure has a general validity 

that can be extended to the solution of general inverse 

problems for a variety of disciplines.
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Understanding the injection water chemistry effect, in terms of both salinity and ionic composition, 
is becoming crucial to increase oil recovery from waterflooding in carbonate reservoirs. Various 
studies have shown that surface charge alteration is the main mechanism behind favorable wettabil-
ity changes toward water-wet conditions observed during the injection of controlled ionic composition 
water in carbonates. Therefore, the synergistic coupling between multiphase transport and electroki-
netics of brine/calcite and brine/crude oil interfaces becomes important to optimize injection water 
compositions for enhanced oil recovery in carbonates.

In this investigation, the electrokinetic interactions of brine and crude oil in carbonates are account-
ed for and coupled with the multiphase Darcy flow model. The electrokinetic interactions are parame-
trized by the zeta potential values of brine/calcite and crude oil/brine interfaces, which are determined 
using a surface complexation model (SCM). The SCM zeta potential parameters are computed based 
on the local concentration of aqueous ions that follow the transport equation. The relative permea-
bility and capillary pressure curves are altered based on zeta potential shifts, which resembles the 
wettability alteration process. The SCM zeta potentials are compared with the experimental zeta 
potential measurements, while the multiphase transport model coupled with geochemistry is validat-
ed through a comparative coreflood experimental data reported in the literature.

The SCM results governed by specified surface geochemical reactions agreed well with zeta po-
tential measurements obtained at both calcite/brine and crude oil/brine interfaces. The coupled 
geochemical SCM with multiphase transport model accurately matched both recovery and pressure 
drop data from forced imbibition tests reported1 in both secondary and tertiary modes. The gener-
ated relative permeability curves followed Craig’s rules in shifting the wettability from oil-wet toward 
water-wet conditions for advanced waterflooding processes in carbonates. These results confirm the 
robustness of the proposed model based on validated SCM electrokinetic interactions. The develop-
ment of such a coupled geochemistry-based multiphase transport model is an important step to 
simulate advanced waterflooding processes in carbonates at reservoir scale by considering the more 
representative physicochemical effects.

The novelty of this work is that it validates the SCM results with experimental zeta potential data 
for different injection water compositions. Also, the applicability of coupled SCM with a multiphase 
transport model is successfully demonstrated by history matching the experimental coreflood data. 
The developed model and new findings will focus on the importance of lower salinity and potential 
determining ions during fluid flow and oil recovery in complex carbonate formations.

Simulation of Advanced Waterflooding in 
Carbonates Using a Surface Complexation-Based 
Multiphase Transport Model

Dr. Moataz O. Abu-AlSaud, Salah H. Al-Saleh, Dr. Subhash C. Ayirala and Dr. Ali A. Yousef

Abstract  /

Introduction
Waterflooding is one of the most successful and widely used methods in oil recovery for both carbonate and 
sandstone formations. Yet, the physicochemical interactions associated with the water injection process for 
oil recovery are not fully understood, especially for carbonates2. The practice of tuning the injected water’s 
ionic composition to improve and optimize the oil recovery process is called advanced waterflooding, low 
salinity, or SmartWater3, 4. 

Many studies have observed that the injected water chemistry impacts the oil recovery, while several other 
experiments have not observed such an effect on oil recovery5. The conflicting results observed on the effect 
of water salinity are due to a lack of fundamental understanding about the root causes of wettability alteration 
associated with manipulating the brine’s ionic composition, which takes place at the microscale level. Various 
microscopic mechanisms have been hypothesized to delineate the physicochemical interactions of wettability 
alteration in carbonates. 

Such pore-scale mechanisms include electric double layer6, the saponification effect7, multi-ion exchange8, 
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and fine migration9. In each of these proposed hy-

potheses, the carbonate/brine and crude oil/brine 

surface charges are altered. Therefore, the associated 

electric zeta potential are affected, which is an import-

ant parameter for the wettability alteration process in 

carbonates10.

There has been multiple studies that couple a trans-

port model with physicochemical interactions to study 

the wettability alteration in an advanced waterflooding 

process, both at the microscopic11, 12 and macroscopic 

scales13. In this work, we focus on wettability alteration 

in advanced waterflooding from a macroscopic point 

of view, where the wettability alteration is generally 

incorporated as a manipulating parameter in the rela-

tive permeability and capillary pressure curves in the 

multiphase Darcy model. The work of Jerauld et al. 

(2008)14 has modeled low salinity flooding by including 

salinity dependent fluid and flow parameters that are 

linearly interpolated between high salinity and low 

salinity injected brines. The salinity adsorption has 

also been used as an interpolating parameter to model 

the low salinity effect in spontaneous imbibition15. 

In the work of Evje and Hiorth (2010)16, brine/chalk 

interactions — mainly calcite dissolution — have been 

used as a wettability alteration parameter to couple 

with multiphase transport equations. Besides the brine/

calcite interactions, the crude oil/brine interactions 

have been recently included in the wettability alter-

ation parameter through the zeta potential values17. 

The brine/carbonate and crude oil/brine zeta po-

tentials have been correlated to different wettability 

parameters based on the Derjaguin, Landau, Verwey, 

and Overbeek theory. Such wettability interpolating 

parameters include contact angle18, wetting stability 

number19, oil-wetting adsorbed surface concentration20, 

and available adsorption sights21. A recent review of 

low salinity modeling can be found in the work of 

Al-Shalabi and Sepehrnoori (2016)13.

In this work, we attempt to model the coupling of 

brine/carbonate and crude oil/brine electrokinetics 

with multiphase transport equations using the Mat-

lab Reservoir Simulation Toolbox (MRST)22. First, 

the zeta potentials of brine/carbonate and crude oil/

brine for different brines are computed using a surface 

complexation model (SCM) embedded in the MRST 

geochemistry module23. The SCM geochemical re-

actions of a calcite surface are based on the work of 

Song et al. (2019)24. For the crude oil/brine, the surface 

reactions are similar to the work of Brady et al. (2012)25. 

The MRST geochemical model is validated with both 

experimental measurements26 and recent computed 

results on zeta potentials obtained using PHREEQC 

software27. Then, the geochemistry MRST-based SCM 

is extended to couple with multiphase transport. The 

coupled model is validated by history matching the ad-

vanced waterflooding recovery and pressure drop data 

reported1 in carbonate cores at reservoir conditions.

Methods and Procedures 
This section describes the methods used to measure 

and model the electrokinetics of the calcite/brine/

crude oil system. 

Rock, Brine and Crude Oil Properties

The rock sample is based on a pure calcite disk with 

a 99 wt% of calcium carbonate. The considered brine 

recipes are prepared by adding different salts to de-

ionized water. Table 1 lists the considered brine ionic 

compositions, and Table 2 lists the key properties of 

the crude oil sample used in this study. The crude oil 

sample is obtained and collected from a carbonate 

reservoir in the field.

Brine Samples (Concentration mg/L)

High Salinity 
Water

SmartWater NaCl Na
2
SO

4

Na+ 18,300 1,824 2,266 1,865

Cl- 32,200 3,220 3,495 —

Ca2+ 650 65 — —

Mg2+ 2,110 211 — —

SO
4

-2 4,290 429 — 3,896

HCO3- 120 — — —

Total Dissolved Solids 
(ppm)

57,670 5,761 5,761 5,761

Ionic Strength (mol/l) 1.15 0.115 0.098 0.123

pH 7.45 7.4 6.3 6.11

Table 1  The composition of different brine ionic compositions used in this study.
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Zeta Potential Measurement

The zeta potential is measured using the phase anal-

ysis light scattering technique, where an electric field 

is applied between two electrodes that contain the 

dispersed and bulk phases. The magnitude and charge 

polarity of the zeta potential dictates the direction 

and velocity of the dispersed phase (calcite particles 

for calcite/brine interface or crude oil emulsion for 

crude oil/brine interface), which is determined using 

the Smoluchowski approximation. 

Additional details on the zeta potential measurement 

procedure can be found in the work of Alghambi et al. 

(2019)26 and Alotaibi and Yousef (2017)28.

SCM

The SCM is used to predict the adsorption of ions 

based on specified surface reactions at equilibrium 

state. The adsorbed ions dictate the surface electric 

charge based on their concentration, charge magnitude, 

and charge polarity. The determined surface electric 

charge corresponds to a zeta potential parameter for 

each calcite/brine and crude oil/brine interface. The 

SCM has been utilized to gain insights on electroki-

netics and the wettability of a carbonate/brine/crude 

oil system29. 

Several SCM surface reactions have been proposed 
to predict the zeta potentials of calcite/brine and crude 
oil/brine interfaces. Brady et al. (2012)25 used SCM 
based on surface reactions proposed by other research-
ers30, 31 to predict zeta potentials for both rock/brine and 
brine/crude oil interfaces in sandstone and carbonate 
rocks. Consequently, the SCM has not been validated 
with experimental zeta potential measurements in this 
study. Mahani et al. (2017)32 studied the electrokinetics 
of carbonate-based rocks with different water salini-
ties using SCM. The SCM results were qualitatively 
validated with different carbonate/brine zeta potential 
measurements. 

Song et al. (2017)24 applied SCM and reported quan-
titative agreement with experimental zeta potential 
measurements of synthetic calcite in multiple brine 
recipes. These authors used SCM surface reactions 
based on the model proposed by Heberling et al. (2011)33. 
In this work, we use the SCM with surface reactions 
similar to the approach of Song et al. (2017)24 to pre-
dict zeta potentials for pure calcite and different brine 
recipes. In addition, we determine brine/crude oil zeta 
potentials by modeling the SCM reactions at the brine/
crude oil interface using a similar model presented in 
the work of Takeya et al. (2019)34. 

Tables 3 and 4 list the surface reactions and the 
equilibrium constants for both calcite and crude oil 
surfaces. The SCM equations are solved using the 
MRST geochemistry module23.

The double layer model is specified to model the 
surface structure of crude oil and calcite surfaces. In the 
model, the concentration of adsorbed surface complexes 
(adsorbed ions) determines the total surface charge as:

 , 1

where σ is the surface charge density (C/m2), F is the 
Faraday constant (96493.5 C/mol), S is the surface 
material mass (g), A is the specific surface area (m2/g), 
z

i
 is the ionic electric charge, and c

i
 is the adsorbed ion 

concentration (mol). The surface charge and surface po-
tential are related through the Gouy-Chapman model:

API 27.1

Acid Number, mg (KOH/g) 0.47

Base Number, mg (KOH/g) 0.04

Saturates (%) 50.6

Asphaltenes (%) 1.6

Resins (%) 20.7

Aromatics (%) 27.1

Table 2  Key properties of the crude oil sample.

Calcite Surface Reaction Equilibrium Constant (log
10

 K
int

)

> CaOH–0.75 + H+ ↔ > CaOH
2

+0.25 0.4

> CO
3
H+0.75 + OH– ↔ > CO

3
–0.25 + H

2
O 0.5

> CaOH–0.75 + Ca2+ ↔ > CaOH..Ca+1.25 1.53

> CaOH–0.75 + Mg2+ ↔ > CaOH..Mg+1.25 1.15

> CO
3
H+0.75 + SO42– ↔ > CO

3
H..SO

4
–1.25 1.5

> CO
3
H+0.75 + HCO–3 ↔ > CO

3
H..HCO

3
–0.25 0.09

> CaOH–0.75 + Na+ ↔ > CaOH..Na+0.25 0.22

> CO
3
H+0.75 + Cl– ↔ > CO

3
H..Cl–0.25 0.65

Table 3  The surface complexation reactions and parameters for the calcite surface.
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 , 2

where 
0
 is the vacuum permittivity , 

w
 is the 

water relative permittivity Ψ is the surface potential 

(V), R is the gas constant , T is the temperature 
(K), I is the brine ionic strength (mol/l), and v is the 
electrolyte ionic charge, which is assumed to be unity. 
The bulk concentration of ions interacts with the ad-
sorbed ions at the surface due to coulombic forces. 
Therefore, the apparent equilibrium constants are 
considered to include the effect of bulk concentration 
of the ions. The apparent and intrinsic equilibrium 
constants, Tables 3 and 4, are described through the 
Boltzmann distribution:

 , 3

where Z
c
 is the net change of the surface charge at the 

surface due to surface reaction. The zeta potential, ζ, 
can be approximated from the surface potential based 
on the linearized Debye-Huckel theory24, which is valid 
for |ψ| ≤ 25 mV35:

 4

where 
K
 is the inverse Debye length-scale, and d

s
 is the 

slipping plane distance from the outer Helmholtz plane. 

For brines with an ionic strength of around 0.1 mol/l 
(all the considered brine recipes except for high salinity 
water), the d

s
 is 0.33 nm24, while the Debye length 

K
–1 is 0.97 nm. For the high salinity water case (ionic 

strength of 1.1 mol/l), d
s
 is 0.1 nm (d

s
 = 0.1/c0.5), while 

Ksw
–1 is 0.29 nm33. The site density for the calcite surface 

is 4.95 sites/nm2 25, while the crude oil surface has a 
site density of 0.47 sites/nm2 34. The calcite specific 
surface area is 1 m2/g25, while the crude oil specific 
area is 0.5 m2/g34. Additional details of the above SCM 
equations are elaborated in the MRST geochemistry 
module23 and PHREEQC user guide27.

Multiphase Transport Equations

The transport equation is modeled using the multi-
phase Darcy equations. Assuming that the rock and 
fluids are incompressible, the mass conservation for 
each fluid phase is written as:

 , 5

where the subscript α denotes the average fluid phase 

(w for water or o for oil), ϕ is the rock porosity, S
a
 is 

the phase saturation, and u
α
 is the fluid phase velocity 

(m/s). The multiphase Darcy velocity is expressed as:

 , 6

where k is the rock absolute permeability (m2), k
rα

(S
α
) 

is the fluid phase relative permeability, µ
α
 is the fluid 

viscosity (Pas), and  is the fluid phase pressure 

gradient (Pa). The saturation and pressure for each 

phase is related as:

 7

 , 8

where p
c
(S

α
) is the capillary pressure (Pa). The individ-

ual ions are transported in the aqueous phase (water) 

according to Eqn. 9:

 , 9

where ρ
s
 is the rock density (kg/m^3) and c

i,αd
 is the 

adsorbed ion concentration. The first term on the left 

side corresponds to the transported dissolved ions in 

water, and the second term is the ion adsorption term. 

The multiphase flow equations are solved using the 

two-phase oil water model in MRST22, while the ion 

transport equation is solved using the geochemistry 

module in MRST23. This work couples these two 

modules through a linear interpolating parameter 

that considers the zeta potentials of the calcite/brine 

and crude oil/brine interfaces. 

The interpolating parameter that captures the wetta-

bility alteration process follows the approach of Korrani 

and Jerauld (2019)19, where a stability number relevant 

to wetting water thin films is defined. This stability 

number compares the electrostatic forces with the at-

tractive Van der Waals forces as suggested by Hirasaki 

(1991)36 to predict the crude oil adhesion map of Buckley 

et al. (1989)37. The dimensionless stability number is 

the ratio of electrostatic over the Van der Waals, which 

can be expressed for a brine/oil/rock system as:

 , 10

where ψb/r is the brine/rock surface potential, and ψb/o 

is the brine/crude oil surface potential. The interpo-

lant associated with the stability number is defined as:

Crude Oil Surface Reaction Equilibrium Constant (log
10

 K
int

)

–COOH ↔ –COO– + H+ 6.0

–N + H+ ↔ –NH+ 4.0

–COOH + Ca+2 ↔ –COOCa+ + H+ -4.0

–COOH + Mg+2 ↔ –COOMg+ + H+ -4.3

–COOH + Na+ ↔ –COONa + H+ -4.0

Table 4  The surface complexation reactions and parameters for the crude oil surface.
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 , 11

where SN is the stability number corresponding to a 

computational grid cell with a given concentration of 

ions, SN
ww

 is the water-wet stability number, and SN
ow

 

is the oil-wet stability number. Equation 11 is defined 

to ensure the bounding interval to range between 0 

and 1 for the interpolant θ. The relative permeability 

and capillary pressure curves are written as:

 , 12

 . 13

When the interpolant θ is equal to zero, the relative 

permeability curves correspond to the water chemistry 

with the more oil-wet state. When the wettability is 

altered toward a more water-wet state, the interpo-

lant value approaches 1, which is usually the ionically 

controlled water salinity. The relative permeability 

curves follow the empirical Brooks-Corey correlation:

 , 14

 , 15

where  is the water relative permeability end point, 

n
w
 is the water phase exponent, n

o
 is the crude oil phase 

exponent, and S
wn

 is the normalized water saturation, 

expressed as:

  16

where S
wi

 is the irreducible water saturation, and S
or
 is 

the residual oil saturation. In our study, the coupling 

between the SCM geochemical model and multiphase 

transport equations is mainly achieved through Eqns. 

9, 12, and 13. Equation 9 is the transport equation for 

each individual ion, while the interpolant associated 

with electrokinetics of the brine/crude oil/carbonate 

system manipulates the relative permeability and cap-

illary pressure curves. 

These equations are solved sequentially using Mat-

lab geochemistry and multiphase transport MRST 

modules. First, the multiphase transport equations 

are solved fully implicitly. Then, the transported ion 

concentrations are passed to the Matlab geochemistry 

to compute the electrokinetic parameters, which main-

ly include surface potential, ψ, and ionic strength, I. 

Results and Discussion 
Here, the results of electrokinetic and multiphase trans-

port modeling are shown. First, the SCM is validated 

by comparing with experimental zeta potential mea-

surements. Then, the results obtained from coupling 

of the SCM with multiphase transport equations are 

compared with advanced waterflooding coreflood 

experimental data reported1 to validate the proposed 

SCM-based multiphase transport model.

SCM

Figures 1 and 2 compare the SCM and experimental 

measurements of zeta potential values for different 

brine recipes. First, the zeta potentials for the brine/

calcite interface are analyzed, followed by the brine/

crude oil interface. The intrinsic equilibrium constants 

are varied in the SCM to match the measured zeta 

potentials. The number of fitting parameters is equal 

to the number of surface reaction equations — eight 

equations for the calcite/brine interface, and five equa-

tions for the crude oil/brine interface. 

The site density and specific surface area of the 

considered surfaces are fixed. For the brine/calcite 

interface, the SCM results follow the trends observed 

in experimental data, and quantitatively agree with the 

laboratory zeta potential measurements especially for 

NaCl, SmartWater, and Na
2
SO

4
 brines. For the high 

salinity water case, the SCM underestimates the zeta 

potential, Fig. 1. Calcite precipitation/dissolution has 

not been considered in the SCM, which is likely to 

contribute to the slight discrepancy observed in the 

high salinity water case. The computed results from 

the PHREEQC and MRST geochemistry of the SCM 

approaches are almost identical. The verification with 

PHREEQC and the experimental validation of the 

zeta potential values provide confidence in the MRST 

geochemistry of the SCM. Also, the intrinsic equilibri-

um constants (fitting parameters) in Table 3 agree with 

the work of Song et al. (2017)24. The SCM results (both 

PHREEQC and MRST geochemistry) confirm that 

Fig. 1  The experimental and SCM zeta potential values at 
the calcite/brine interface.

Fig. 2  The experimental and SCM zeta potential values at 
the crude oil/brine interface.
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the total surface charge and zeta potential of calcite/
brine interface strongly depend on the divalent ions 
(Ca2+, Mg2+, and SO

4
2-) due to larger surface charge 

and intrinsic equilibrium values. 

For the crude oil/brine interface cases, the SCM zeta 
potential results qualitatively matched the experimen-
tal observations. Figure 2 shows the predicted zeta 
potentials are in general negatively charged, which is 
consistent with the experimental results. The equilib-
rium constants in Table 4 are also similar to the values 
reported in the works of Brady et al. (2012)25 and Takeya 
et al. (2019)34 — the discrepancy in the equilibrium 
constants are within a value of one for each reaction. 

When the pH level is around 7 (above the crude oil/
brine isoelectric point), the carboxylic acids in crude oil 
are not completely protonated (reaction 1 in Table 4). 
In addition, the protonation of nitrogen bases (reaction 
2 in Table 4) is not sufficient to switch the crude oil 
surface to a positive charge, which agrees well with 
the previously reported experimental observations37, 38.

SCM-Based Multiphase Transport Model

A comparison between the developed SCM-based 
multiphase flow simulation results and experimental 
data of Yousef et al. (2011)1 is presented for both sec-
ondary (high salinity water) and tertiary (SmartWater) 
coreflooding processes. First, high salinity water (first 
brine composition in Table 1) is injected for about 10 
pore volumes (PVs) to displace oil inside a carbonate 
composite. Then, high salinity water is diluted twice 
(moderate salinity water) and injected for another 10 
PVs, where the experimental data showed an increase 
of 7% in the oil recovery. Finally, an additional 10 PVs 
of SmartWater (10-times diluted high salinity water 
shown as second brine composition in Table 1) are in-
jected, which resulted in a 10% incremental oil recovery. 

Figures 3 and 4 show the oil recovery and pressure 
drop history matches obtained for the considered 
advanced waterflooding coreflood experiment at res-
ervoir conditions. The blue line indicates the simula-
tion results, while the red stars are the coreflood data. 
The details on the composite carbonate reservoir core 
petrophysical properties can be found in Yousef et al. 
(2011)1. The fluid flow is assumed to be 1D, where the 
number of grid blocks is 20 in the direction of the 
water injection. In this study, the capillary pressure 
is neglected, which means the brine and crude oil 
pressures are equal. Also, the ion adsorption is small 
and assumed to be negligible.

The simulation results based on the coupled electroki-
netics with multiphase transport are in good agreement 
with the experimental data for both oil recovery and 
pressure drop. The oil recovery increases from about 
75% to 85% when the high salinity water is diluted 
twice. In the proposed model, this increase in oil re-
covery is captured by shifting the high salinity rela-
tive permeability curves to those of moderate salinity 
water through the stability number, SN, interpolant 
(electrokinetic interpolating parameter in Eqn. 11). The 
interpolating parameter increases from 0 to 1 for each 
grid block as the diluted water salinity is injected, and 

the wettability becomes more water-wet as illustrated 
in Eqn. 12. A similar methodology is followed when the 
moderate salinity water is altered to SmartWater, where 
the oil recovery increased to 93%. The pressure drop 
slightly decreases with SmartWater due to a decrease 
in residual oil as well as brine viscosity.

Figure 5 illustrates the two sets of oil/water rela-
tive permeability curves used for coreflood history 
matching, which correspond to high salinity water and 
SmartWater recipes. Based on the transported ions 
and computed zeta potentials, the oil/water relative 
permeability curves gradually shift to the right side 
as the two brine compositions get mixed. Due to this 
shift, the crossover point between the oil and water 
relative permeability curves changes from 0.5 to about 
0.6. This increase in the crossover point agrees with 

Fig. 3  The oil recovery vs. injected PVs for advanced waterflooding coreflood 
process. The blue line indicates the simulation results, and the red stars 
are the coreflood data of Yousef et al. (2011)1.

Fig. 4  The pressure drop vs. injected PVs for advanced waterflooding coreflood 
process. The blue line indicates the simulation results, and the red stars 
are the coreflood data of Yousef et al. (2011)1.
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Craig’s rule of thumb on wettability interpretation39, 

wherein the crossover point below 0.5 implies oil-wet 

conditions and above 0.5 represents a water-wet state. 

Therefore, the proposed model, through coupling of 

electrokinetics with multiphase transport equations, 

has been shown to successfully simulate the core-scale 

wettability alteration associated with advanced wa-

terflooding in carbonates. Although the simulation 

results reasonably matched experimental coreflood 

data, further refinements in the proposed model will be 

considered in the future. These include incorporating 

ion adsorption and diffusion effects, since these mecha-

nisms are especially important to promote spontaneous 

imbibition in low permeability carbonates. It should 

be further considered to include fluid-fluid interaction 

effects in the tuning parameter such as the surface 

viscosity/viscoelasticity of crude oil/brine interface 

for improving the model accuracy. 

These effects are important as several recent studies 

have shown that interface viscosity/viscoelasticity has 

a strong effect to impact oil mobilization in advanced 

waterflooding through reducing snap-off40 and enhanc-

ing oil blob coalescence41, 42. More validations should 

also be performed against additional experimental 

data such as effluent ion concentrations obtained from 

a chromatographic test to increase the confidence and 

enhance the robustness of the proposed electrokinet-

ics-based multiphase transport model.

Summary and Conclusions 
In this work, a multiphase transport model coupled with 

electrokinetics is developed to simulate an advanced 

waterflooding coreflood process in carbonates. The 

SCM results are validated through comparison with 

zeta potential measurements of calcite/brine and crude 

oil/brine interfaces for different brine recipes. The 

validated SCM geochemical model is then coupled 

with a multiphase Darcy model, where the computed 

SCM zeta potentials become parameters of both the 

relative permeability and capillary pressure curves. The 

proposed model is shown to successfully history match 

the oil recovery and pressure drop data on advanced 

waterflooding1 from reservoir condition coreflood tests.

The generated relative permeability curves demon-

strated the favorable shifts in relative permeability 

curves to capture the wettability alterations from oil-wet 

toward water-wet conditions associated with advanced 

waterflooding in carbonates. These promising results 

confirmed the robustness of the proposed model based 

on validated SCM electrokinetic interactions. The 

development of such a coupled geochemistry-based 

multiphase transport model is an important step to 

simulate advanced waterflooding processes in carbonate 

reservoirs by considering more representative physi-

cochemical effects. The efforts are currently ongoing 

to enhance the predictive capabilities of the proposed 

model by including ion adsorption/diffusion mecha-

nisms and fluid-fluid interaction effects in terms of 

interface viscosity/viscoelasticity.
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A measurement system capable of in situ measurements of formation permeability is described. The 
measurement method relies upon imaging the distribution of magnetic permeability fluid injected 
into a wellbore system through mutual inductance measurements between a pair of coils, and relating 
the change in distribution of this fluid over time to a direct measurement of formation phase perme-
ability. 

Analysis of the mutual inductance measurement method shows a unique response to distributions 
of magnetic permeability for various coil spacings, and insensitivity to other confounding electrical 
parameters. The lower bound of measurement variance for this system is modeled for a continuum 
of coil spacings and radii of investigation for a perturbation in magnetic permeability.

Magnetic Permeability Sensor Array Prototype  
to Evaluate Reservoir Phase Permeability in Situ 
Downhole

Robert W. Adams, Jesus M. Felix Servin, Dr. Wei Wang and Dr. Max Deffenbaugh

Abstract  /

Introduction
Oil field reservoir models rely upon accurate measurements of formation absolute and phase permeability to 
predict the movement of hydrocarbon and brines through the reservoir during production. The phase perme-
ability relates to the flow of fluid through a formation to the pressure difference driving the flow:

 1

where q
i
 is the flux of fluid through the formation, k

i
 is the phase permeability for fluid phase, i = oil, gas, water, 

η
i
 is the dynamic viscosity for the fluid phase, and ∆P is the pressure drop across the formation through which 

the fluid is flowing1. Phase permeability is an important unique aspect to specific types of formations and 
specific conditions of the reservoir. The accuracy of fluid flow models through a reservoir require an accurate 
quantification of phase permeability across the reservoir. Production simulation results from oil field reservoir 
models establish where injection and production wells should be located in the reservoir, and the rate at which 
to inject into and produce fluid from these wells to maximize the hydrocarbon production from the reservoir. 

Existing methods to measure formation permeability include: ex-situ core analysis, empirically derived 
correlations with other formation measurements such as porosity, and inference from system level pressure 
measurements1. Ex-situ methods face difficulties replicating the conditions that the formation experiences 
downhole, and often include permanent changes to the physical structure of the sample as it is removed from 
the subsurface. Empirically derived correlations are often unique for each reservoir, implying formation per-
meability measurements are acquired ex post facto, and are therefore not useful for initial reservoir modeling. 
Inferred measurements from system level testing are average measurements of absolute permeability over the 
depth of the well, with no specificity in the formation’s absolute permeability at selected depths.

A novel system, which measures the formation’s absolute and phase permeability in situ downhole is presented, 
Fig. 1. Colloidal magnetite fluid with ultra-high magnetic permeability2-4 fluid is injected from the surface into 
the downhole formation. The high magnetic permeability fluid permeates through the formation some radial 
distance over a period of time, which is directly related to the formation phase permeability. A sensor array 
measures the radial distribution of surrounding magnetic permeability during the injection process. The phase 
permeability is proportional to the integrated difference in radial distribution of magnetic permeability, such that:

 2

where ρ is the radial distance from the measurement system into the surrounding formation, ρ
max

 is the max-
imum radius of investigation of the system into the surrounding formation, ρ

w
 is the radial distance from the 

measurement system to the borehole wall, µ
fluid

 is the known magnetic permeability of the injected fluid, µ
1
 

is the baseline radial magnetic permeability distribution measured at time T
1
, µ

2
 is the radial magnetic per-

meability distribution measured at time T
2
, and ∆T = T

2
 – T

1
 is the time difference between radial magnetic 

permeability distribution measurements. 

By comparing the magnetic permeability radial distribution surrounding the sensor array before/during/after 
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the magnetic permeability fluid injection, the system 
is able to directly measure the phase permeability of 
the surrounding formation in situ downhole. 

In this work, the analytical description of the measure-
ment sensor’s measurement is described. Sensitivity to 
the formation’s magnetic permeability radial measure-
ments is investigated, along with other confounding 
measurement parameters, e.g., formation conductivity. 
The Cramer-Rao lower bound of magnetic permeability 
estimation as a function of radial depth and sensor 
array spacing is quantified.

Methods
The sensor array measures the radial magnetic per-
meability distribution of the formation via mutual 
inductance between pairs of solenoid coils axially 
distributed along the downhole tool. The mutual in-
ductance between the pairs of coils is altered by the 
magnetic permeability of the surrounding formation, as 
the magnetic field lines are distorted by the distribution 
of magnetic permeability. Additionally, the alteration 
of these field lines has a radial sensitivity related to 
the axial spacing between coil pairs5. Measuring the 
mutual inductance across the array of solenoid coils 
distributed axially along the tool with unique spacing 
enables the system to map the radial distribution of 
the magnetic permeability surrounding the sensor.

Any eddy current effects on mutual inductance 
measurements can be minimized by reducing the 
interrogation frequency of the measurement, such 
that electrical conductivity and permittivity changes 
have no effect on the measurement of interest. This 
implies the measurement can be made insensitive to the 
displacement of brine and hydrocarbon fluids within 
the formation as the high magnetic permeability fluid 
permeates the subsurface. This is a unique advantage 
for this measurement system, as it is sensitive only to 
the movement of the high magnetic permeability fluid. 

The radial sensitivity of the mutual inductance mea-
surements for pairs that this system is modeled by are 
a pair of induction coils in a cylindrically symmetric 
system, Fig. 2. A transmitting induction coil with N

T
 

turns and coil radius, α, is located at the origin, with 
a receiver coil having N

R
 turns and α that is spaced 

axially from the transmitting coil a distance, L. The 
coils are surrounded by three cylindrical shells having 
permittivity, ɛ

m
, conductivity, σ

m
, and magnetic perme-

ability, µ
m
, where the subscript m = 1,2,3 denotes the 

index of the cylindrical shell. The innermost shell, m 
= 1, extends from the origin to a first interface radius, 
ρ

1
. The outermost shell, m = 3, extends infinitely from 

interface radius, ρ
2
. The shell, m = 2, extends from 

interface radius, ρ
1
, to ρ

2
 with some thickness, ∆ρ, and 

contains a perturbation in the electrical parameters 
that define the material. 

For this analysis, it is assumed that the interrogation 
frequency of the measurement is low, such that the 
electromagnetic behavior of the system is defined by 
the magneto-quasistatic regime. In general, the axial 
vector potential of a cylindrically symmetric magne-
to-quasistatic system, A*

z,m
, is:

  3

where I
0
 and K

0
 are zero order modified Bessel func-

tions of the first and second kind, C
m
 and D

m
 are 

continuity coefficients for shell m derived from the 

boundary conditions at each shell interface, z is the 

axial separation distance from the transmitting coil, 

 is the moment of the transmitter coil, I
T
 

Fig. 1  The formation phase permeability measurement system, including 
a sensor array to image the radial profile of magnetic permeability 
surrounding the tool, injection of ultra-high magnetic permeability 
fluid from the surface to the downhole subsurface, and the surrounding 
formation with altered magnetic permeability due to the injected fluid.

Fig. 2  The mutual inductance measurement array modeled as a two coil system 
in a cylindrically symmetric medium. A cylindrical shell of perturbed 
magnetic permeability is located some radial distance away from the 
coils.
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is the magnitude of the current driving the transmitter 
coil,  is the wavelength of the 
quasi-stationary mode in cylindrical shell m where the 
ɛ

m
· 2πf

o
 term is removed as it is assumed the system is 

operating in a lower frequency regime, λ is a separation 
constant for the continuum of propagating modes, and 
f

o
 is the operating frequency of the transmitter coil. 

In this cylindrically symmetric system, tangential 
components of the electric and magnetic field are con-
tinuous functions at each shell interface, and as such 
the boundary conditions at the interface between the 
shells are:

  4

  5

The unknown continuity coefficients, C
m
 and D

m
, 

for each shell can be solved using a series of equations 
from these boundary condition relations, such that:

 
 6

 
 7

where I
1
 and K

1
 are first order modified Bessel functions 

of the first and second kind5. In the innermost shell 
containing the transmitter, the coefficient D

1
 = 1 as 

the source excitation takes the form of 

. In the outermost shell, the 

coefficient C
3
 = 0 since function  as the 

radial distance . The axial component of the 
magnetic field, H

z,m
, is then computed from the vector 

potential, A*
z,m

, as:

  8

Along the borehole axis, the radial components of 
the magnetic field, H

r
, and the rotational field, Eϕ, 

reduce to H
r
 = Eϕ = 0. The axial magnetic field at the 

receiver coil simplifies to:

 

  9

In Eqn. 9, the left hand side represents the primary 
magnetic field along the z-axis and the right hand side 
of the equation represents the magnetic field due to 
induced currents in the surrounding medium, e.g., H

z
 

= h
source

 + h
formation

. The mutual inductance, M
12
, between 

the transmitter and receiver coil is then:

  10

Figure 3 shows the mutual inductance between a 
transmitting and receiving coil with radius α = 0.0318 
meters, N

T
 = N

R
 = 1, and axial spacings ranging from L 

= 1 to 10 meters at an interrogation frequency of f
0
 = 1 

kHz. The interior and exterior shells are assumed to be 

air, e.g., σ
1,3

 ≈ 0 and µ
1,3

 = µ
0
. The middle shell m = 2, 

with a thickness of ∆ρ = 0.01 meters, has conductivity, 
σ

2
 ≈ 0, and a perturbed magnetic permeability, µ

2
 = 

1.1 · µ
0
. The inner radial interface of the perturbed 

shell, ρ
1
, ranges from 0.06 to 5 meters, and the mutual 

inductance between coils is calculated at each location. 
The normalized mutual inductance, , is the ratio of 
the total mutual inductance to the mutual inductance 
contribution from the source term, such that the effects 
of the formation is highlighted, where:

  11

From Fig. 3, it is evident that the unique sensitivity 
profiles of  exist for each unique coil spacing for 
alterations in the magnetic permeability of the system. 
Note that the sensitivity to perturbations in magnetic 
permeability decreases when the extents of the shell 
radius increase. This follows from the density of the 
field lines traversing this perturbed shell, which rapidly 
decreases at the radii further from the coil pair. Given 
the uniqueness of each mutual inductance sensitivity 
profile for a fixed spacing of transmitter and receiver 
coil, an image of the radial distribution of magnetic 
permeability can be constructed from mutual induc-
tance measurements across an array of coils with 
varying spacings.

A similar analysis is performed with a perturbation 
in conductivity. The geometries and coils are the same 
as in the analysis for Fig. 3. The interior and exterior 
shells are assumed to be brine saturated subsurface 
formations, e.g., σ

1,3
 ≈ 0.1 S/meter and µ

1,3
 = µ

0
. The 

middle shell, m = 2, with a thickness of ∆ρ = 0.01 
meters, has magnetic permeability, µ

2
 = µ

0
, and a per-

turbation in conductivity such that σ
2
 ≈ 1 S/meter. 

Figure 4 shows the normalized mutual inductance of 
this cylindrically symmetric system with a conductivity 
perturbation. In this case, there is little sensitivity to 
the perturbations in formation electrical characteristics 

Fig. 3  The mutual inductance normalized by the 
transmitter moment and source field contribution 
between two induction coils for axial spacings,  
L = 1 to 10 meters, as a perturbation of magnetic 
permeability in a thin shell of material is moved 
radially away from the coil system.
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beyond 0.5 meters. Additionally, the response from 
each coil spacing does not have a unique sensitivity 
response vs. the perturbation radius.

Figure 5 shows the mutual inductance response of 
the sensor system to a variety of magnetic permeability 
profiles. Similar to the analysis for Fig. 3, transmit-
ting and receiving coils with a radius of α = 0.0318 
meters are arranged axially along a tool and probe the 
formation at an interrogation frequency of f

0
= 1 kHz. 

A continuum of cylindrical shells with a thickness of 
∆ρ = 0.01 meters is constructed with conductivity σ

m
 

≈ 0 and a relative magnetic permeability profile, µ
m
, 

that corresponds to the profiles in Fig. 5a. Figure 5b 
shows the response from the system. 

The mutual inductance due to the formation, M
12 ,-

formation
 = M

12
(H

z
 – h

source
), is the measurement response 

with the source term effects removed. From these fig-
ures, it is evident that extending the length of a higher 

magnetic permeability region radially outwards into the 

surrounding formation provides an easily discernable 

difference in mutual inductance response of the system. 

The lensing effect of the higher magnetic permeability 

region provides a sharp response in mutual inductance 

at specific coil separations, and an effect in the ampli-

tude envelope of the mutual inductance as a function 

of coil separation. The magnitude of the measured 

mutual inductance, due to the formation response, 

is in the sub-nH range. Consequently, this response 

scales proportionally with the number of turns of the 

transmitting and receiving coil. 

Although the formation-only mutual inductance 

shows a strong response to changes in magnetic per-

meability of the surrounding formation, the small 

measurement magnitude brings into question the 

feasibility of the measurement in a physical system. 

The lower bound of variance in this measurement can 

be quantified by the Cramer-Rao lower bound. The 

system estimates relative magnetic permeability from 

a set of N mutual inductance measurements:

 12

where n = 1, …, N is the sample index, x[n] are discrete 

measurements taken with the system, M
12
[n; µ

R
] is the 

actual value of mutual inductance at sample n, which 

is a function of the relative magnetic permeability, µ
R
, 

and w[n] is white Gaussian noise with a mean of zero 

and a variance of σ 2. The minimum variance of an 

estimate of the scalar parameter, µ
R
, , is given by the 

Cramer-Rao lower bound of this sampling process, 

such that:

 13

As the Gaussian noise component of these mea-

surements are independent of the parameter, µ
R
, the 

covariance matrix of this data set is C = σ 2I, where I 

is an N × N identity matrix6. The Fisher information 

matrix, , is then computed as:

Fig. 4  The mutual inductance normalized by the 
transmitter moment and source field contribution 
between two induction coils for axial spacings,  
L = 1 to 10 meters, as a perturbation of conductivity 
in a thin shell of material is moved radially away 
from the coil system.

Fig. 5  (a) Relative magnetic permeability profiles in an analysis of a two coil mutual inductance measurement system for a cylindrically 
symmetric geometry. (b) Mutual inductance, M

12
, with source term magnetic field effects removed, for a continuum of axial coil 

separations applied to the corresponding magnetic permeability profiles.
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 14

The minimum standard deviation of an estimate of 
, and therefore, the smallest value of µ

R
 detectable 

by this system, is then:

  15

Figure 6 shows the minimum standard deviation of 
magnetic permeability estimates from a two coil mutual 
inductance measurement system. In this analysis, the 
geometry and coil configuration is the same as the 
analysis for Fig. 3, with air for the interior and exterior 
shells such that σ

1,3
 ≈ 0 and µ

1,3
 = µ

0
, and a perturbation 

shell, m = 2, with a thickness of ∆ρ = 0.01 meters, σ
2
 ≈ 

0, and µ
2
 = 1.1 · µ

0
. The transmitter and receiver coils 

have N
T
 = N

R
 = 100 turns. It is assumed that the white 

Gaussian noise standard deviation of the measurement 
system is σ = 1 × 10–10 H. This corresponds to ~60 µA 
of measurement noise in impedance measurement of 
inductance at a frequency of 1 kHz at an amplitude of 
1 V, which is well within the specifications of modern 
impedance analyzers. 

The number of samples is N = 1 × 104, which cor-
responds to 10 s of integration time for a system sam-
pling frequency of 1 kHz. Results are displayed for a 
continuum of axial coil spacings, and radial depth of 
investigation for a perturbation in magnetic permea-
bility. In this example, estimates of a change in mag-
netic permeability, ∆µ

R
 ≤ 0.1 · µ

0
, are feasible within 

~1 meter from the borehole and coil spacings up to 
~2 meters in separation. To increase the bounds of 
this ∆µ

R
 ≤ 0.1 · µ

0
 measurement region, the designer 

of such a system could: increase the number of turns 
in the transmitter and/or receiver coil, increase the 
number of samples in the data set, or decrease the 
magnitude of the measurement noise in the system. 

Conclusions
Radial imaging of magnetic permeability with an 
array of induction coils arranged axially along a tool 
is feasible. The multiple coil system is sensitive to per-
turbations in magnetic permeability, and insensitive to 
other confounding electrical parameters, e.g., conduc-
tivity and permittivity. The unique response to radial 
distributions of magnetic permeability for fixed coil 
spacings provides a basis upon which radial images 
can be constructed. The lower bound of magnetic 
permeability estimation variance demonstrates the 
need for a precision measurement system, but this is 
within the capability of modern impedance measure-
ment systems. 
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With the evolving sensor technologies and advances in integrated solutions, routine surveys and 
interventions in oil and gas fields are going through a major revamp. The most recent developments 
in autonomous and untethered devices set a new paradigm shift in such crucial and frequent well 
operations. In this article, field implementation and deployment of the novel Sensor Ball technology 
is discussed to highlight success, challenges, and lessons learned.

The Sensor Ball is a small device, approximately the size of a tennis ball, which enables autonomous 
and untethered logging of pressure, temperature, and triaxial magnetic field amplitude. This intelli-
gent device is self-powered using a battery pack with a battery life that suffices logging a dozen wells, 
including logging time and data transfer time. The internal memory is designed for large and high 
definition data rates for high-resolution and extended recording. The Sensor Ball is encapsulated in 
a ruggedized housing that can withstand downhole conditions as the device travels on a free-fall down 
to the programmed depth, as well as while floating back to the surface. This housing is light enough 
to enable an efficient and flawless return of the Sensor Ball exclusively under a bouncy effect once 
the attached weight is dropped off.

For the deployment of this innovative technology, new procedures and guidelines are developed to 
ensure a successful journey of the Sensor Ball. Despite the fail-safe features, pre-job planning and 
risk assessment procedures complement this user-friendly technology and make it reliable, efficient, 
and easy to use. 

The results of the field trial of the Sensor Ball in water supply wells revealed a superior data qual-
ity of in both down log and log up modes. In fact, during the mission time of three hours only, thou-
sands of feet of high-resolution data were collected. This operation would have taken double the time 
and a much more significant well site footprint, in addition to increased health, safety, and environment 
risk, if a standard wireline/slick line unit was mobilized for this routine operation. The Sensor Ball 
is a reliable and more advanced alternative to traditional well surveillance methods considering the 
operational efficiency and comparison with benchmark data. In fact, the footprint, cost, and time 
savings are substantial, especially in an offshore environment where barges are mobilized and oper-
ations depend on weather conditions.

This technology is a major breakthrough in the surveillance and logging world as it enables a fully 
autonomous and untethered acquisition of high-resolution data. The Sensor Ball offers more with 
less, and will ultimately replace traditional surveillance and intervention methods.

Sensor Ball: Field Deployment of Autonomous  
and Untethered Surveillance

Mohamed Larbi Zeghlache, Dr. Ahmed Y. Bukhamseen, Husain A. Muailu and Ahmed J. Abdulghani

Abstract  /

Introduction
In the oil and gas industry, data acquisitions of downhole pressure and temperature are considered one of 
the fundamental and routine responsibilities in any field’s life cycle. Since early hydrocarbon exploration, the 
urgency of collecting bottom-hole pressure (BHP) and bottom-hole temperature (BHT) measurements has 
expanded, due to its direct contribution to understanding reservoir health, performance, and behavior. Static 
BHP (SBHP) and static BHT (SBHT) are obtained from wells to depict knowledge of local and average reser-
voir pressures and temperatures, which can help reservoir management study and optimize fluid movements, 
reservoir interference, and the driving mechanism. Consequently, as physical and chemical properties in a 
reservoir change over time, routine monitoring — monthly, quarterly, biannually, or annually — is essential 
to capture these dynamic changes. 

Evaluation of well integrity is a priority and represents a key element of the well integrity management system. 
In fact, temperature and pressure surveys play a major role in evaluating and preventing casing leaks in the 
wells and any potential flow behind casings. Usually, these surveys are the first line of defense in evaluating 
immediate risks related to downhole flow anomalies in a well. There are several patterns for such anomalies 
that may indicate potential leaks, fluid dumping, up flow or flow behind the casing. Frequent surveillance 
and time-lapse analysis of such data are useful to maintain asset integrity and promptly recommend remedial 
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actions as needed.

There are several methods to obtain pressure and 
temperature surveys, such as from drillstem test strings, 
slick line gauges, wireline logging, coiled tubing sensors, 
a permanent downhole monitoring system (PDHMS), 
and electric submersible pump (ESP) sensors. In wells 
without ESPs or a PDHMS, a conventional well in-
tervention is required to record these surveys. One of 
the cost-effective intervention methods is the use of a 
slick line unit with electronic gauges, Fig. 1. 

This operation requires a vessel and ideal weather 
conditions in case of an offshore environment. The 
procedure involves rigging up safety equipment, a 
lubricator, and a pressure memory gauge. Then, the 
slick line cable with the pressure gauge is run in hole 
(RIH) to the desired depth with multiple stationary 
points throughout the survey to calculate the pressure 
gradient (psi/ft). Consequently, the average pressure 
will be calculated and referenced to the original oil-wa-
ter contact. 

As for the temperature surveys, the data is download-
ed and analyzed by production engineers to evaluate 
potential leaks or downhole fluids communication. 
Intelligent field equipment, such as the PDHMS and 
ESP sensors, usually includes two gauges installed 
in the completion string by a rig near the reservoir’s 
depth. These sensors are useful to estimate the reservoir 
pressure and gradient. In all cases where the sensors 
are permanent or retrievable, the collected data are 
stationary point measurements.

Well Surveillance Solutions
In most cases, more than 60% of a field’s annual data 
acquisition and surveillance programs require pressure 
and temperature surveys. Conventional well interven-
tion techniques, such as wireline and slick line, are 
considered a cost-effective conveyance and acquisi-
tion method. With relatively extensive logistical and 
operational procedures, they produce a good quality 
data with depth references. This data adds to the other 
solutions from downhole permanent and retrievable 
systems for a comprehensive integration and analysis 
at well and field scales.

Ultimately, equipping all wells with intelligent field 
monitoring systems can bring a major benefit to general-
ize and automate downhole surveillance. Research and 
development of new solutions to address field challenges 
and further optimize operations led to a miniaturized 
and self-deployable device for such applications1. The 
new autonomous and untethered well logging device, 
such as the Sensor Ball, brings numerous benefits:

• Small operational footprint. For offshore operations, 
this means a small transportation boat can be used. 
This solution brings a considerable cost saving as 
there is no need for big barges and cranes.

• Saves time and is cost-effective, due to a shorter 
job duration and manpower requirement.

• Improved health, safety, and environmental aspects 
as operators are not exposed to high pressure or 
gas release.

• Less risk of getting stuck in the well and leaving 

a fish, due to miniaturized design and multiple 

built-in safety features.

• No requirement for additional equipment to run the 

job, such as wireline and slick line rig-up equipment.

• The ability to get continuous pressure/temperature 

profile instead of selecting a handful of points in 

regular conveyance logging jobs.

• The ability to deploy several Sensor Balls simul-

taneously and independently for batch logging of 

several wells. This technique potentially enables 

batch surveillance of an eight-well platform in a 

single day as opposed to taking several days with 

conventional techniques.

• Provides superior data quality and validation from 

both acquisitions while descending and ascending 

in a well. Data repeatability and accuracy can be 

further analyzed.

• The Sensor Ball is a reliable conveyance platform. 

It has a modular design that can easily integrate 

more sensors in the future as needed.

Sensor Ball Design
The Sensor Ball was designed as a fit-for-purpose tool to 

address field challenges. Here, the main design features 

are described2 and aligned with the project’s objectives.

Mechanical Housing 

The main tool body is made of syntactic foam housing 

on top of a 3D printed polycarbonate chassis, Fig. 2. 

A perfect seal between these two elements is achieved 

Fig. 1  An illustration of a typical slick line rig up with its associated safety 
equipment. (Courtesy of Schlumberger)
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using two radial seal O-rings. The chassis contains the 
temperature and a three-axis magnetometer while the 
pressure sensor is mounted on top of the syntactic foam 
housing. The magnetometer is used as a casing collar 
locator (CCL), which is also used for depth correlation. 

This engineered solution ensures that all internal 
components fit tightly in place while adhering to size 
constraints — a diameter of approximately 2.5” to be 

easily deployable in most well completions and restric-
tions. The material was carefully selected to have an 
effective overall density for the tool — approximately 
0.9 g/cc — to allow it to float back to the surface in a 

water well when the down log is complete. 

The housing has a unique hydrodynamic design to 

reduce drag forces along the well tubing and ensure 

minimal wiggling while descending and ascending. 

Weight Assembly 

To allow the Sensor Ball to navigate to the target well 

depth by gravity, a dissolvable weight made of com-

posite material is attached magnetically to the bottom 

of the tool. With the weight attached, the effective tool 

density increases to 1.1 g/cc. The Sensor Ball can be 

programmed to demagnetize the electromagnet and 

release the weight when a predetermined criterion 

is met3. 

Currently, triggers include time, pressure, or tem-

perature setpoints to initiate the release. Once the 

weight is released, it is left to dissolve on the bottom of 

the well and the Sensor Ball floats back to the surface 

using buoyancy. 

Electrical Circuitry

Figure 3 shows the electrical architecture of the Sensor 

Ball. The four main printed circuit boards (PCBs) are 

stacked on top of each other using connectors and 

mounted on top of the chassis. The function of each 

PCB is described as follows:

• The first PCB provides power to other system com-

ponents through two 3.3 V batteries rated up to 

250 °C. The power PCB is responsible for releasing 

the dissolvable weight when the release criteria is 

met. The weight release actuator is composed of 

two magnets that can be magnetized or demag-

netized by applying a short current pulse into the 

coil around it. Before Sensor Ball deployment, the 

magnets are polarized on the same direction to 

pull the magnetic weight toward the Sensor Ball 

body. When the weight release is triggered, the 

two magnets are polarized in opposite directions.

Fig. 2  The packaging of the different components within the compact Sensor 
Ball.

Fig. 3  The electrical architecture for the Sensor Ball.

Power PCB
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• The second PCB contains the control circuit and 

sensors, including a microcontroller, an external 

memory block, and the sensor’s electronics. Wire-

less communication for both programming and 

retrieving data is achieved through an antenna coil 

and the telemetry circuit4.

• The last PCB physically connects the sensors to 

the Sensor Ball chassis. 

Field Deployments of Sensor Ball
The untethered logging, surveillance, and intervention 

services will revolutionize the oil and gas industry. 

Many aspects around this new technique are estab-

lished to accommodate logistical and operational 

procedures. To ensure safe and efficient execution, 

a fit-for-purpose program was established and com-

municated with stakeholders, Fig. 4. 

The deployment program is tailored to both a single 

well survey as well as campaign surveys. In this latter 

one, few options are discussed depending on the num-

ber of wells to be logged and the number of devices to 

be used. The first and straightforward deployment is 

the series technique, Fig. 5. This technique enables 

the survey of multiple wells with the same device. 

The second technique is the parallel deployment 

where multitasking takes place offline during the log-

ging time. Once the Sensor Ball is below the master 

valve, the operator can move to the next well and 

repeat the same deployment procedure. This process 

can be repeated until the last well to be surveyed or 

the last available Sensor Ball. Once the deployment is 

completed, the operator attends the wells in the same 

sequence to retrieve the Sensor Ball in the first well 

and so on. Figure 6 represents the sequence of events 

Fig. 4   The untethered surveillance program.
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to illustrate the parallel deployment of Sensor Balls. 

Obviously, this means that retrieval of the Sensor 

Ball and the number of available Sensor Balls are not 

a concern. Otherwise, the number of wells to assess 

before returning to the first one is roughly equal to the 

truncated ratio of the Sensor Ball’s average mission 

time to the cumulative time of mobilizing and deploy-

ing the Sensor Ball in the next well. This technique 

ensures minimal time for the Sensor Ball to wait below 

the master valve before retrieval, and helps to save 

battery life as well as to anticipate any operational or 

technical issues. 

The combination of series and parallel deployment 

can further optimize operations and increase the 

number of surveyed wells; thereby further reducing 

time and cost associated with well surveillance. The 

resulting deployment scheme, referred to as batch 

surveillance, is a large-scale deployment of multiple 

devices for simultaneous multiple well surveillance. 
Figure 7 illustrates the batch surveillance of 12 wells 
using four Sensor Balls.

Technology Validation
The testing protocol of each manufactured Sensor 
Ball includes deployment in the Houston Research 
Center (HRC2) test well5. In this shallow depth well, 
the expected BHT and BHP are 600 psi and 70 °F, 
respectively. In addition to these two important param-
eters, the mission time is programmed to ensure that 
the weight release mechanism is activated if pressure 
and temperature limits are not reached within the 
mission’s estimated time. This is critical in case of any 
operational concern during deployment or premature 
mission failure due to stack, for example. The safety 
measures that are included in the Sensor Ball design 
ensures safe deployment and retrieval of the device 
with the primary mechanism or secondary measures 
such as flow back. 

As illustrated in step 2 of Fig. 4, the parameters of 
the Sensor Ball’s mission depends on the surveillance 
objectives and the well information. The temperature 
and pressure set points for the weight release trigger 
are usually taken from the previous well surveys when 
available6. Otherwise, a known temperature and pres-
sure gradients can be used to estimate these parameters. 
For the mission time, multiple runs of the Sensor Ball 
in a known environment helped to establish a good 
model to estimate the RIH and pull out of hole speeds.

Test Well Results
In the field trial, pre-job checks of the Sensor Ball 
were completed, including release parameters before 
the dissolvable weight was attached in place, Fig. 8. 
At this stage, it is important to ensure the integrity of 
the weight and verifying both the ferromagnetic plate 
and screw. Partial magnetization or rugous magnet 

Fig. 6  The parallel deployment in multiple wells using multiple Sensor Balls.

Fig. 5  The series deployment in multiple wells using one device.
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poles due to accumulated debris can cause premature 

release of the weight material; thereby leading to an 

incomplete surveillance. 

A good practice is to clean the surface of the magnetic 

poles and physically test the weight adherence. Once 

the well is ready and the cap is opened, dropping the 

ball has to be done gently in a full fluid column. Due 

to some difficulties opening the tree cap, lubricants 

and other spray chemicals might be used to facilitate 

and accelerate this process. Contaminated fluids have 

to be purged prior to contact with the Sensor Ball.

The collected raw data comprising temperature, 

pressure, and triaxle magnetic field is retrieved from 

the Sensor Ball using a docking station. To visualize 

and analyze the data, commercial logging software 

can be used to import the data into a table, either in 

ASCI or any convenient format. 

The major events captured by the Sensor Ball in Fig. 

9 are quality control points and summarized as follows:

1. The Sensor Ball is powered up, parameters are 

checked, and the weight is loaded. The sensors 

read atmospheric pressure and surface tempera-

ture. The magnetometers show the initial activity 

during testing and weight loading, which usually 

Fig. 7  A batch deployment in multiple wells using multiple Sensor Balls.

Fig. 8  The field deployment of a Sensor Ball in a land rigless well: (a) Sensor Ball pre-job check, (b) dropped in the well, and (c) returned back.
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happens away from the wellhead.

2. The Sensor Ball is dropped and the well cap is 
sealed. There is a slight increase in pressure due 
to opening the crown valve.

3. The pressure increases the surface wellhead pressure 
(SWHP) as soon as the master valve is opened. 
There is a standby time (between event 3 and event 
4), during which the Sensor Ball pressure sensor is 
exposed to well conditions; however, temperature 
and magnetometer sensors indicate that the device 
is stationary. This corresponds to the required valve 
operation to allow enough room for the Sensor Ball 
to start the downward journey.

4. All sensors respond as the Sensor Ball starts its 
down movement. The magnetometer is one of the 
precise sensors used to identify wellhead and casing 
collars, and respond in a timely manner to this event. 
The temperature sensor shows a typical response 
of surface variations, whereas pressure buildup vs. 
time reflects increased depth. The pressure data is 
an important quality control to the overall mission 
as well as to identify fluid gradient and compare it 
to the expected/known fluid properties.

5. As one of the set conditions is met to trigger the 
weight release, the mirror profile begins. In this 
candidate well, the temperature set parameter was 
met, and so the Sensor Ball successfully released 
the weight and started to float back to the surface. 
This position is what is commonly known in the 
logging world as the bottom log interval. It can be 
the total depth of the well or any desired depth to 
start the log up.

If the Sensor Ball is programmed to reach the 
bottom of the well, then the pressure and tempera-
ture at this event represents the SBHP and SBHT, 
respectively. This is quite important to consider in 
the pre-job planning as it can determine the success 
of the mission and data acquisition. 

6. After the completed log up, the Sensor Ball is 
standing by below the master valve, waiting to be 
retrieved. The magnetometer shows no movement 
of the Sensor Ball. In addition, pressure and tem-
perature return to the initial values before RIH. 
The difference in logging speed is clearly noticeable 
in time between down log and log up. The down 
movement is relatively slower due to buoyancy and 
friction. This feature is an important quality control 
of sensor data repeatability at different speeds and 
potential sensor positions in the wellbore. 

Event 6 also marks the total mission time that 
is used in pre-job planning. Therefore, it is a good 
practice to compare the expected values with re-
spect to the actual ones. A safety factor should be 
applied to the timed weight release to account for 
any intermittent stick and slip, or stuck situation. 
Methods to detect the Sensor Ball below the mas-
ter valve before departure and after arrival can be 
added for more operational optimization and they 
are not discussed in this article. 

7. The master valve is opened to let the Sensor Ball 
go below the crown valve. Once the master valve 
is closed and the crown valve is opened, pressure is 
relieved from the bleed nose on the cap; therefore, 
the recorded pressure drops to atmospheric levels. 
This movement is captured by the magnetometers 

Fig. 9  The Sensor Ball’s quality control points for raw data and major events.
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and reflected in the triaxle responses.

8. As soon as the Sensor Ball is retrieved and cleaned, 

the power is switched off to save the battery life, 

waiting for data retrieval.

During any operation or intervention downhole in the 

oil and gas well, depth is the primary measurement. 

For tethered intervention, depth measurement relies 

on surface and/or downhole devices such as drillpipes’ 

tally, depth marks, magnetic marks, depth wheels, etc. 

For the case of untethered devices (or robots) that are 

not equipped with the previously mentioned devices or 

techniques for direct or indirect depth measurement, 

the sensor data is recorded vs. time. The challenge is 

to properly and accurately convert the time stamp into 

depth for meaningful and useable data.

In the depth calculation workflow, a data set is creat-

ed using two subsets of the recorded data. If a well is 

logged multiple times, each run data can be handled 

separately for processing purposes and then compared 

for better QA/QC. The outcome of this workflow is 

two subsets of data corresponding to different resolu-

tions. These logs are depth matched to each other at 

a first step and then correlated to the reference depth 
measurement. Log stretching and compression due to 
uneven motion of the Sensor Ball can be corrected 
using the predefined collars’ location. This effect can 
be greatly minimized with the use of an accelerometer 
sensor. This will allow proper speed correction of the 
data prior to depth matching.

The automated workflow using data analytics and 
machine learning addresses depth measurement chal-
lenges. The example of data used in this article can 
be applied to any other data package where record-
ing starts and ends at the surface with either manual 
switch (on/off) or based on a built-in sensor to satisfy 
a specific condition (temperature, pressure, time, etc.). 
Once data acquisition is successfully completed, the 
automated depth correlation process will sequentially 
and intuitively generate parameters to clean and prepare 
the data, e.g., SWHP, SBHP, and SBHT. 

This is mainly used for clipping the nonrequired 
portion of the data such as surface idle condition. 
This will also detect the time index of the bottom 
position where the untethered device has reached the 
total depth based on recorded data such as pressure, 

Fig. 10  The Sensor Ball’s processed and separated time driven data; (a) down log, and (b) log up.
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temperature, magnetometer, and accelerometer data, 
etc. Once data is clean and the time of the total depth 
position is marked, data is separated into two sets: down 
log and log up. To properly present both subsets, a 
time stamp of the fast data (log up) data is corrected 
and re-indexed.

The results of this process are presented in Fig. 10. 
Both down log and log up are processed and synchro-
nized to the down log. The time logs will be converted 
to a depth log using one or a combination of the fol-
lowing techniques:

1. Pressure gradient: In this technique, the pressure 
gradient from both logs is used to convert time 
to depth using the known well fluid density. This 
qualitative approach can help for quick-look anal-
ysis of the data prior to full processing and proper 
depth conversion. In addition, it is a good quality 
control to assess the Sensor Ball mission success. 
Anomalies can be spotted quite easily across zones 
where pressure gradient comes off the expected 
range of the fluid column.

The derived depth, D, is calculated using the SWHP 

and SBHP shown in event 4 and event 5, respectively:

 1

 2

Therefore, 

 3

where SBHP is the static bottom-hole pressure, SWHP 

is the surface wellhead pressure, HP is the hydrostatic 

pressure, ρ is the fluid density, g is the gravity accel-

eration, and h is the true vertical depth.

The main challenge with this technique is borehole 

fluid heterogeneity, well deviation and sensor motion.

2. Tubing tally: It is quite efficient to correlate down 

log and log up data to the reference tally using the 

magnetometer data. The collar location is further 

improved using all six channels from the triaxle 

magnetometer in both the down and up directions. 

Fig. 11  The Sensor Ball’s final depth driven data.
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Obviously, this technique will work in a cased hole 
environment with good tally or CCL log.

3. Log correlation: Time driven data can be correlated 
to previous temperature and pressure surveys. The 
depth reference of the original conveyance is used 
for the untethered sensor data.

As illustrated in Fig. 10, data follows similar responses 
and trends from both the down log and log up path. 
Despite the fact that both logs can be “on time” by 
stretching and compressing the logs, it is clear that 
additional speed correction and correlations are needed 
to properly put the data “on depth.” This crucial step 
is performed to produce the final data with a wireline 
quality and display.

Sensor Ball Solution
The final product in Fig. 11 represents a paradigm 
shift in the logging and intervention business. In fact, 
the correlation validation of the processed data used 
benchmarks from previous wireline surveys as well 
as stationary measurements. This approach is used 
to qualitatively and quantitatively assess the Sensor 
Ball response in downhole conditions.

The temperature data tracks the response from the 
previous wireline run, and the calibrated tempera-
ture values show a consistent response to well history 
and downhole conditions. The depth matching has 
eliminated the apparent discrepancy in the pressure 
profiles and produced a perfect match between the 
two data sets. The resultant gradients match the fluid 
sample analysis and calculated gradient from other 
pressure sensors. 

Concerning the triaxle magnetometer data, the casing 
collar detection is a key enabler to multiple quality 
control points as well as for the depth correlation with 
reference to the completion tally. Having such large 
data with six channels increases detection accuracy and 
collar location confidence, which results in a reliable 
alternative to CCL. The Sensor Ball can help attend 
wells where the accessibility of standard wireline and 
slick line tools might be challenging due to sophisticated 
well completion.

The algorithms used to derive this answer are de-
veloped using python open source libraries to clean 
and process the data. The software capabilities adds 
another dimension to data acquisition and processing 
by adding further process optimization and service 
automation. Such an example is demonstrated in the 
correlation between different data as well as channels 
of the same data set. Classification algorithms are also 
used in collar detection to discriminate noise peaks 
and confidently allocate coherent peaks to the corre-
sponding collar in the completion tally. For data plotting 
and display, the pyplot module from the matplotlib 
library enabled great flexibility and features to deal 
with log data.

Conclusions
With the ever evolving sensor technologies, in terms of 
miniaturization and capabilities, the Fourth Industrial 

Revolution adds the algorithms and techniques to fur-
ther optimize and automate downhole data acquisition 
and interpretation. This major advance in the oil and 
gas industry is demonstrated through the Sensor Ball 
technology that brings the intervention and surveillance 
of wells to a new era. In fact, the Sensor Ball enables 
untethered and autonomous acquisition of pressure, 
temperature, and triaxial magnetic field data. This 
revolutionary small device paves the way to eliminate 
routine wireline and slick line surveys in both land 
and offshore environments. 

The field trials of this technology helped to tailor 
a unique solution and facilitate field operations. The 
lessons learned from these trials played a major role 
in the continuous development of the Sensor Ball. 
The technology value realization relies on the reduced 
footprint, logistics, and personnel involved in well sur-
veillance, which leads to a major health, safety, and 
environmental improvement in cost and time savings. 
In addition, remote offshore locations will no longer 
wait for barges and ideal weather. 

The flexibility that the Sensor Ball offers also enabled 
optimization of logging and surveillance campaigns 
through simultaneous multiwell operations. This major 
step cannot be achieved with traditional wireline or slick 
line units and crews. In the future, more sensors will be 
integrated and the design will be upgraded to extend 
capabilities to other well types and well conditions.
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Produced water is considered one of the largest by volume waste streams and one of the most chal-
lenging effluents in the oil and gas industry. This is due to the variety of contaminants that make up 
produced water. A variety of treatment methods have been studied and implemented. These methods 
strive to reduce the hydrocarbon content and the number of contaminants in produced water to meet 
the disposal, reuse, and environmental regulations. These contaminants can include dispersed oil 
droplets, suspended solids, dissolved solids, heavy metals, and other production chemicals.

Some of those contaminates have value and can be a commodity in different applications such as 
bromine (Br). Br ions (Br-) can be used to form calcium bromide (CaBr

2
), which is considered one of 

the most effective drilling agents and is used extensively in drilling and completion operations. 
This article will strive to highlight the utilization and the new extraction method of Br- from pro-

duced water to form CaBr
2
. The conventional preparation of CaBr

2
 drilling and completion fluids 

involves adding solid CaBr
2
 salts to the water, which can be relatively expensive. Another method 

can involve the handling of strong oxidants and toxic gas to form solid CaBr
2
. 

The novel method outlined in this article is a cost-effective and environmentally friendly way of 
generating CaBr

2
 from produced water. The method includes processing the produced water to re-

cover Br-. This is done by first passing the produced water through a resin bed, including Br specif-
ic ion exchange resin, where the Br- will adsorb/absorb onto the resin. 

The second step involves regenerating the resin with regenerant having calcium cations and water 
to form CaBr

2
. The final stage is generating the CaBr

2
 in the water from the bed of resin by intro-

ducing concentrated calcium chloride (CaCl
2
), forming a concentrated solution of water and CaBr

2
. 

The developed solution will be further processed to provide drilling and completion fluids. 
This novel method constitutes a good example of produced water utilization in different applications 

to minimize waste and reduce the costs of forming highly consumable materials. 

Produced Water Reuse for Drilling and Completion 
Fluids Using a Novel Ion Exchange Unit

Dr. Fahd I. Alghunaimi, Dr. Young C. Choi and Hind S. Aldossary

Abstract  /

Introduction
Produced water treatment is a major process in the petroleum field, and adsorption is one of the effective 
ways to remove oil/ions from produced water to meet the disposal, reuse, and environmental regulations1, 2. 
The conventional way of treating produced water is mainly physical separation of oil and water using gravity; 
however, this technology could not produce high quality water for reuse in applications like fracturing.

Currently, there is a need to develop novel methods and materials targeting the removal of oil/ions from 
produced water. Br ions (Br-) are available in oil field produced water. Br- can be used to form calcium bro-
mide (CaBr

2
), which is considered one of the most effective drilling agents and is typically used extensively in 

drilling and completion operations.

This article strives to highlight the utilization and the new extraction method of Br- from produced water to 
form CaBr

2
. As previously mentioned, CaBr

2
 can be used as a drilling fluid based on its high specific gravity. 

The conventional preparation of CaBr
2
 drilling and completion fluids involves adding solid CaBr

2
 salts to the 

water, which can be relatively expensive. Subsequently, this novel process is using Br specific ion exchange 
resins and calcium chloride (CaCl

2
) as a regenerant to recover and generate CaBr

2
 from waste material (pro-

duced water) with less cost. 

Some oil field produced water contains high levels of Br, which is used in drilling operations for various 
purposes. It would be beneficial to generate and obtain drilling fluid (CaBr

2
) from a location that is in close 

proximity to where it will be consumed. During the drilling, the drilling fluid helps to cool and lubricate the 
drill bit and carry and remove rock cuttings from the hole. The drilling fluid also provides hydrostatic pressure 
to prevent or reduce formation fluids from the subterranean formation entering into the hole during drilling. 
These drilling fluids include the completion fluids and workover fluids. 

Completion fluid is placed into the well (wellbore) for completion activities, including final operations prior to 
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hydrocarbon production. Such final operations include 

setting screens or production liners, setting tubing, 

installing packers, and perforating the wellbore casing 

(in productions zones). Completion fluids also help to 

improve well productivity by reducing damage to the 

producing zone, and prepare, repair, clean out, and 

complete the wellbore during the completion phase. 

Water-based drilling fluids have a base fluid that 

is freshwater, seawater, brine, saturated brine, or a 

formation brine. Drilling fluid with CaBr
2
 is a bene-

ficial drilling fluid utilized to cool and lubricate the 

drill bit and to remove rock cuttings from the hole. 

The CaBr
2
 drilling fluid will increase the density to 

overcome formation pressures and thereby maintain 

oil, gas, and water in place in the formation during 

drilling or well completion operations.

The current practice of extracting Br from brine is to 

use chlorine (Cl
2
), a strong oxidant, to convert Br- to 

Br
2
 gas under high temperature. Then, a solvent is used 

to extract Br
2
, which is later used to produce CaBr

2
. 

This traditional method involves many toxic gaseous 

processes that are not suitable for oil field operations3, 4. 

Here, this work utilizes the ionic affinity of resins to 

capture Br and then release it with CaCl
2
, which will 

produce CaBr
2
 in a single step instead of multiple steps 

that are highly energy intensive and costly. This idea 

will allow the production of CaBr
2
 in the oil production 

sites from produced water and prevent the production 

of dangerous chemicals and gases. Using only aqueous 

and ionic processes makes this work naturally safer and 

compatible with current oil operations. Also, it will 

provide more value from the current production sites.

Field/Lab Work 

Collected Data for Produced Water

Several produced water samples were collected from the 

field and analyzed in the lab for Br concentration and 

total dissolved solids (TDS). This is to reuse produced 

water and generate valuable materials such as CaBr
2
 

for oil and gas well drilling operations. Hydrocarbon 

production operations use high quantities of Br as part 

of a drilling fluid formulation and this is currently a 

significant cost for oil and gas companies. 

Table 1 lists the Br concentration data of the collected 

produced water samples. These concentrations are 

significantly sufficient for Br extraction and gener-

ate valuable material. Also, the Br concentrations in 

the selected seven fields are higher than Br seawater 

concentration, which is around 65 ppm and is usually 

used for a source of Br.

Conventional Method for Br Production 

The preparation of CaBr
2
 drilling fluids — including 

CaBr
2
 completion fluids — that are aqueous-based 

typically involves adding solid CaBr
2
 salt to the water. 

Consequently, solid CaBr
2
 salt is relatively expensive, 

and the manufacture of CaBr
2
 salt can include the han-

dling of strong oxidants and toxic gas. Also, the current 

method of producing CaBr
2
 salt involves dedicated 

facilities and operations for oxidation and recovery 

of Br, which makes it costly5, 6.

Briefly, Br is generated at an industrial scale using 

the following methods:

1. Use Cl gas and a strong acid (sulfuric acid (H
2
SO

4
)) 

to oxidize Br- into Br gas.

2. Production of Br gas and its removal by large fans.

3. Production of hydrogen Br in an aqueous solution 

by dissolving Br gas in the water with sulfur dioxide 

(SO
2
).

4. Oxidation of hydrogen Br with steam and Cl to Br.

Most of these steps require handling of highly haz-

ardous material at a high temperature and in a vapor 

state. Using such a method at oil production sites is 

not favorable, which has many hazardous operations 

already. 

In this work, we propose to use Br specific ion ex-

change resins for the capture of Br- from water and 

then generate CaBr
2
 in solution in water by using CaBr

2
 

salt. Prior articles on ion exchange resin for Br recovery 

dates back to 19637, 8.

Novel Method to Form CaBr
2

The novel method in this article can generate CaBr
2
 in 

solution in water without requiring the addition of the 

costly solid CaBr
2
 salt and generally without handling 

of strong oxidants or toxic gas. The method includes 

processing the produced water to recover Br- from the 

produced water to give the CaBr
2
 in solution in water, 

wherein the produced water is discharged from oil or 

gas wells. Also, the method includes concentrating the 

CaBr
2
 and forming the drilling fluid. 

Specifically, the method flows the produced water 

through a bed of resin, including Br specific ion ex-

change resin, that are specific to Br for the capture of 

Br- and absorbs Br- from the produced water onto the 

resin, wherein the produced water includes produced 

water discharged from a subterranean formation. When 

the resin is fully loaded (or approaching fully loaded) 

with Br-, CaCl
2
 in water will be used as a regenerant 

Oil/Gas Field A B C D E F G

TDS (ppm) 97,869 188,034 196,952 86,427 146,238 131,793 124,124

Br (ppm) 435.2 589.0 674.3 680.1 857.5 818.6 749.2

Table 1  Br concentration data in produced water.
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to replace the Br- in the resin with chloride ion (Cl-). 
Therefore, a solution of CaBr

2
 in the water will be 

discharged from the ion exchange vessel. The CaBr
2
 

water solution will be further processed to concentrate 

the CaBr
2
 to apply the CaBr

2
 solution as a drilling fluid 

due to its relatively high specific gravity.

Ion exchange resin is a resin medium or support 

structure for ion exchange and is typically small beads. 

The beads are generally spherical, with a diameter of 

0.25 millimeters (mm) to 1.0 mm. The ion exchange 

resin (beads) can be from an organic polymer sub-

strate such as polystyrene, acrylic polymers, or other 

polymers. The beads are porous to provide a relatively 

large surface area on and in the beads. The sorption 

of ions “onto” the ion exchange resin can be sorption 

“on” surfaces of the ion exchange resin, including “in” 

the ion exchange resin matrix.

Examples of the resin that can be used for this purpose 

include but are not limited to Purolite® Br Plus/9218. 

At the initial state, the resin is loaded with Cl-. When 

the produced water is passed through the bed of ion 

exchange resins in a column reactor, Br- will replace 

Cl-. Once the binding sites on the resin is fully loaded 

with Br-, a typical regeneration method is to use highly 

concentrated sodium chloride (NaCl) to replace Br- with 

Cl- again. This process will generate a NaBr solution, 

which is not as desirable as a CaBr
2
 solution for use as 

a drilling fluid. Therefore, we plan to use a saturated 

CaCl
2
 solution as a method of regeneration, instead of 

NaCl. This way, the CaBr
2
 solution will be obtained, 

which is desirable as a drilling fluid. Figure 1 illustrates 

the overall process, and it is a time-sequence diagram.

The overall mass balance can be expressed as: R–Cl 
+ Br- ↔ R–Br + Cl-, where R is the ion exchange resin.

The forward reaction occurs until the saturation of 
the resin and the reverse reaction indicates the regen-
eration process.

The overall regeneration can be expressed as: R–Br 
+ CaCl

2
 ↔ R–Cl + CaBr

2
.

This method is significantly simpler compared to the 
conventional method that uses Cl, which also requires 
a high amount of energy for steam and other chemicals 
such as SO

2
 and H

2
SO

4
. In addition, this method 

would not cause exposure of the produced water to the 
atmosphere, which can cause further issues when the 
final wastewater needs to be disposed of underground.

Conclusions
Produced water with valuable impurities, such as Br

2
, 

can be wasted by injecting it into deep wells. At the 
same time, there is an increase in drilling activities and 
consumption of a significant amount of the costly CaBr

2
 

as part of the drilling operation, which increases the 
overall cost of drilling. This work will add value from 
wasted produced water by extracting Br and forming 
CaBr

2
, and thereby generate valuable materials from 

waste, reducing the cost of chemical purchase for high 
consumable material in the oil and gas industry.

Currently, generating drilling fluid using conventional 
technology includes using very high risk plants with 
deadly gases and material handling, which needs to be 
addressed. Even if this can be done, the produced water 
will be oxidized from the oxygen in the atmosphere, 
and it will make it impossible to inject the produced 

Fig. 1  A schematic representation of the new process to form the CaBr
2
 solution from produced water.
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water for pressure maintenance or final disposal in 
deep wells. This will require a high cost to reduce the 
oxygen, or a new method of handling and utilizing the 
produced water. This work explains an ion exchange 
method that is inherently safe and low in cost, and the 
produced water will not come in contact with oxygen, 
so that after Br extraction, the produced water can be 
utilized and disposed of as planned before adding the 
new Br extraction process.

A portable unit can be designed with simple feed 
and collection tanks connected with a resin bed for Br 
extraction and CaBr

2
 generation. This new unit could 

recover Br from the produced water for utilization in 
oil and gas well drilling, completion, and workover 
operations.

References
1. Lai, H.Y., de Leon, A., Pangilinan, K. and Advincula, 

R.: “Superoleophilic and Under Oil Superhydrophobic 

Organogel Coatings for Oil and Water Separation,” 

Progress in Organic Coatings, Vol. 115, February 2018, pp. 

122-129. 

2. Munirasu, S., Abu Haija, M. and Banat, F.: “Use of Mem-

brane Technology for Oil Field and Refinery Produced 

Water Treatment — A Review,” Process Safety and Envi-

ronmental Protection, Vol. 100, March 2016, pp. 183-202.

3. Schoenbeck, L.C.: “Process for Sorption of Bromide 

Ion on Anion Exchange Resins,” U.S. Patent 3,101,250, 

August 1963.

4. Hein, R.F.: “Sorption of Bromine on Anion Exchange 

Resins in the Presence of Excess Chlorine,” U.S. Patent 

3,174,828, March 1965.

5. Soyluoglu, M., Ersan, M.S., Ateia, M. and Karanfil, T.: 

“Removal of Bromide from Natural Waters: Bromide 

Selective vs. Conventional Ion Exchange Resins,” Che-

mosphere, Vol. 238, January 2020.

6. Gradishar, F.J. and Hein, R.F.: “Recovery of Bromine 

from Solution Thereof,” U.S. Patent 3,098,716, July 1963.

7. Marinsky, J.A. and Yizhak, M. (eds): Ion Exchange and 

Solvent Extraction: A Series of Advances, Vol. 12, CRC Press, 

1995, 472 p.

8. Singare, P.U. and Patange, A.N.: “Study on Halide Ions 

Selectivity of Industrial Grade Anion Exchange Resin 

Auchlite A-378,” International Letters of Chemistry, Physics 

and Astronomy, Vol. 30, 2014, pp. 44-50.

About the Authors

Dr. Fahd I. Alghunaimi

Ph.D. in Chemical Engineering, 

King Abdullah University of 

Science and Technology

Dr. Young C. Choi

Ph.D. in Environmental 

Engineering, 

University of Illinois  

at Urbana-Champaign

Dr. Young C. Choi is a Research Science 

Consultant working on the Produced Water 

Treatment Team at the Oil and Gas Treatment 

Division in Saudi Aramco’s Research & 

Development Center since 2019. 

His current work includes pretreatment and 

membrane processes for the treatment and 

reuse of produced water, aimed at reducing the 

consumption of groundwater. 

Young has more than 20 years of experience 

in the industry and research institutes working 

on water and wastewater treatment processes 

as well as desalination and industrial water 

reuse. 

He received his Ph.D. degree in Environmen-

tal Engineering from the University of Illinois at 

Urbana-Champaign, Champaign, IL.

Dr. Fahd I. Alghunaimi is currently the Water 

Treatment Program Lead with the Production 

Technology Division of Saudi Aramco’s 

Exploration and Petroleum Engineering Center 

– Advanced Research Center (EXPEC ARC). His 

area of expertise is crude oil separation and 

water treatment. 

Fahd’s recent work in oil removal from 

produced water was selected by the Institution 

of Chemical Engineers (IChemE) as a finalist in 

the Oil and Gas Category of the 2021 Global 

Energy Show Awards. 

He has published more than 25 technical 

papers, disclosed more than 15 patents, 

deployed several technologies, received eight 

international awards, presented several 

conference papers, and has more than 650 

citations. 

Fahd received his Ph.D. degree in Chemical 

Engineering from the King Abdullah University 

of Science and Technology, Thuwal, Saudi 

Arabia.

Hind S. Aldossary

B.S. in Chemical Engineering, 

University College London

Hind S. Aldossary joined Saudi Aramco in 2017 

as a Chemical Engineer, and works in the 

Production Technology Division of Saudi 

Aramco’s Exploration and Petroleum Engineer-

ing Center – Advanced Research Center (EXPEC 

ARC). Currently, Hind is working on several 

projects in the area of underwater treatment 

research. 

She has submitted several articles for 

publication, and patents. Her conference 

presentation on Novel Adsorbent Materials for 

Oil Removal from Produced Water was selected 

as the best presentation of the Fifth Internation-

al Conference on Innovative Engineering 

Materials in 2021. 

Hind received her B.S. degree in Chemical 

Engineering from University College London, 

London, U.K.

54779araD11R1.indd   76 2/14/22   10:45 PM



77 The Aramco Journal of TechnologySpring 2022

Due to processes of geological diagenesis, pores in rocks can be isolated from the rest of the connect-
ed pore networks. The amount and spatial distribution of isolated pores can have a direct effect on 
petrophysical properties and performance of the reservoir.

This article introduces a new methodology to quantify the isolated porosity of heterogeneous res-
ervoirs from multifrequency (dispersion) dielectric measurements. Based on numerical simulation 
studies, digital rock physics techniques are used to generate rock models with different isolated po-
rosities. 3D dielectric dispersion modeling is then performed on the models to obtain the dispersion 
of the rock’s dielectric constant. Dielectric dispersion behaves differently as the pore connectivity 
changes due to an increase in isolated porosity. The dielectric constant is sensitive to frequency when 
pores are isolated, while insensitive to the frequency when pores are connected. 

Variation of the dielectric constant is strongly related to the number of isolated pores. For rocks 
having the same total porosity, their dielectric constant increases as the isolated porosity increases. 
This enhancement of dielectric constant is attributed to the increase in pore network tortuosity, re-
sulting in increased accumulations of electric charges at the interfaces between the solid and pores. 
Analytical relationships are developed to correlate isolated porosity with the rate of permittivity 
change and/or the permittivity ratio, derived from the dispersion of dielectric constants. 

The validity and applicability of the established method are demonstrated by the agreement of pre-
dicted isolated porosity with the true values used in building the rock models. Potentially, this method 
can be used for enhancing reservoir characterization with modern multifrequency dielectric logs.

Reservoir Characterization for Isolated Porosity  
from Multifrequency Dielectric Measurements

Dr. Guodong Jin, Dr. Shouxiang M. Ma, Ryan Antle and Salah M. Al-Ofi

Abstract  /

Introduction
Characterization of carbonate reservoirs can be very challenging due to the intrinsic heterogeneities that occur 
at all scales of observations and measurements. Heterogeneity in carbonates can be attributed to pores with 
different shapes, origin, and sizes, and more importantly the degree of pore connectivity. Due to the processes 
of geological diagenesis, pores in carbonates can be completely isolated or connected via very narrow pore 
throats. A pore (or a cluster of pores) is defined as the isolated pore if the size of its pore throats, d

PT
, connect-

ing to the neighboring pores, is smaller than a critical size of d
PT,c

, i.e., d
PT

 < d
PT,c

. In this study, d
PT,c

 = 0, that 
is, isolated pores are completely disconnected. The number of isolated pores is then the isolated porosity, ϕ

i
. 

Connected porosity, ϕ
c
, is the difference between total, ϕ

t
, and isolated porosities.

Isolated pores in carbonate rocks can be in the forms of vugular, moldic, and intra-particle porosities. De-
pending on the number of such pores, petrophysical properties of carbonate reservoirs can vary dramatically, 
even if they have similar total porosities. For example, the permeability of carbonate rocks with similar total 
porosities can vary over several orders of magnitude. Isolated porosity is an important reservoir property that 
needs to be characterized because it contributes little to reservoir fluid flow, but is directly related to total 
reservoir pore volume1. Currently there are no practical methods available to characterize isolated porosity in 
the laboratory or downhole, without cutting rocks open for petrographical studies. One of the methods is to 
characterize total and connected porosities separately2, the isolated porosity is then derived from the difference 
between the total and connected porosity, Eqn. 1. 

 1

Imaging techniques such as micro-computed tomography (micro-CT) and focused ion beam scanning electron 
microscopy can be used to directly characterize connected and isolated pores as well as the interconnectivity 
of the pore system from the reconstructed pore morphology3. The accuracy of these properties are affected 
by the image resolution4, 5. Based on various physical principles, downhole logging tools, including density, 
neutron, and nuclear magnetic resonance (NMR), can be used to infer formation porosity without differen-
tiating the connected and isolated porosities, though various methods of integrating these porosity logs with 
acoustic log for formation porosity characterization have been published. 
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Chang et al. (1997)6 considered the vugs be isolated 
if their NMR T

2
 relaxation times are larger than 750 

ms. Chen et al. (2008)7 assumed that all pores in car-
bonate rocks are connected, but they differ in pore 
connectivity, a variable difficult to quantify from the 
measurements. Kwak et al. (2019)8 derived the pore 
connectivity factor from the volume comparison of 
NMR invisible D

2
O replacement with NMR visible 

H
2
O in the pore systems. Chi et al. (2016)9 and Cheng 

and Heidari (2017)10 estimated the isolated porosity and 
connected porosity from the difference of NMR T

2
 

distributions acquired before and after the injection of 
a nanoparticle contrast agent or manganese-bearing 
solution into the rock samples. 

The amount and spatial distribution of isolated pores 
have a strong effect on the dielectric responses of a 
porous medium. When pores are isolated from the 
network of pore space, they reduce the interconnec-
tivity of the pore system and increase the tortuous 
paths of both viscous fluid flow and electric current 
flow11-13. The tortuous flow channels will enhance the 
interfacial polarization due to the accumulations of 
electric changes at the solid-void space interface, when 
the medium is under an external electric field. 

When a pore throat connecting two large pores is 
narrow, e.g., < 1 μm, positive electric charges (cations) 
will accumulate at one end of the narrow throat and 
be deficit at the other side, resulting in an electrically 
neural concentration gradient. This concentration 
gradient imposes an electric dipole moment across 
the narrow pore throat, and therefore, gives rise to 
an enhancement of the dielectric permittivity of the 
medium14. Such an enhancement of dielectric permit-
tivity can be used to characterize pore connectivity 
of a porous medium. Toumelin and Torres-Verdín 
(2007)15 and (2009)16 observed a significant effect of 
pore connectivity on dielectric dispersion in their 2D 
pore-scale simulations. Consequently, it is challenging, 
if not impossible, to quantify the effect of the isolated 
porosity on the dielectric dispersion from reservoir 
rocks because samples with known isolated porosity 
are usually unavailable.

This article details an innovative technique and 
methodology17 to quantify isolated porosity of het-
erogeneous reservoirs from multifrequency dielectric 
measurements. Digital rock models with a various 
number of isolated porosities are created using ad-
vanced digital rock physics techniques. 3D dielectric 
dispersion modeling is then performed on the models 
to obtain the dispersion of dielectric constant and elec-
trical conductivity. From the simulated data, analytical 
models are derived to determine the isolated porosity 
from the dielectric measurements. For validation of 
the established models, new digital rock models are 
created and the predicted isolated porosity from the 
established analytical models is compared to the true 
values used in the rock model generations.

Methodology

Digital Rock Models 

It is extremely difficult, if not impossible, to obtain 

natural rock samples that have a similar total porosi-
ty, but with a different amount of isolated porosities. 
Digital rock physics techniques provide an alternative 
way to generate models of a various number of isolated 
porosities while keeping their pore morphology, as well 
as total porosity, almost the same or similar. The 3D 
digital rock models used in this dielectric dispersion 
simulation study are created either based on the random 
sphere packs or from the micro-CT images. 

Figure 1 displays three types of base models used in 
this study. Model type A is extracted from a random 
pack of uniform spheres, in which the grain size is 
149 µm. Models B and C are micro-CT images from 
two different types of rock samples. Table 1 lists the 
properties of three base models and the variants that 
are created directly from the base models. 

The fraction of isolated porosity ( fi ) is defined in 
Eqn. 2 as the ratio of the ϕ

i
 to the ϕ

t
:

  2

When all pores in the sample are well connected, fi 
= 0.0. If all pores are disconnected, fi  = 1.0. The base 
model is used to create its derived models (or variants) 
that can have a various number of isolated porosities. 
The connected pore network of the base model was first 
partitioned into individual pores, and the connectivity 
of each individual pore is determined. After partition, 
individual pores are selectively isolated to tune the 
final connected and isolated porosity fractions. It is 
critical for the pore network to remain fully connected 
from one end to the other for the dielectric simulation 
to work properly. 

Five models are created for each type of A and B. They 
have similar total porosity of approximately 20%, but a 
different number of connected porosities, Table 1. These 
models are used to establish relationships between the 
isolated porosities and the dielectric responses. For 
comparison and validation, five type C models with 
different fractions of connected porosities are created.

Fig. 1  The three types of base models used in the dielectric 
dispersion simulations: A is created from a random 
sphere pack of uniform grain size, while types B and 
C are micro-CT images of two types of rock samples.
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Dielectric Dispersion Simulation 

Dielectric constant is a measure of the electric polar-
izability of a material under an external electric field. 
A material with high permittivity polarizes more in 
response to an applied electric field than a material 
with low permittivity, thereby storing more energy 
in the material. The relative permittivity, ɛ

r
(ω), de-

fined as the permittivity of a given material relative to 
the permittivity of a vacuum, is in general a complex 
function having the real and imaginary components: 

  3

where i is the imaginary number, σ(ω) is the electrical 
conductivity (S/m, Siemens per meter), ɛ

0
 is the vacu-

um permittivity, ω is the angular frequency ω = 2πF, 
where F is the frequency of the external electric field. 

The real component  of relative permittivity, Eqn. 
3, generally decreases with the increasing frequency, 
while the imaginary component usually expressed as 
dielectric loss increases with the increasing frequency. 
The dielectric loss is negligible if the conductivity of a 
solid material is low, less than ~10 m S/m, as it is for 
many geologic materials18. Therefore, the dielectric 
constant is typically the real component of the dielectric 
permittivity. For simplicity hereafter, the dielectric 
permittivity or the dielectric constant represents the 
real component of the relative dielectric permittivity.

In this study, dielectric dispersion simulations are 
conducted on the digital models, Table 1, to obtain the 
dielectric constant, . The theoretical methodology 
of dielectric simulations is described in detail in Chen 
and Heidari (2016)19, Garcia and Heidari (2018)20, and 
Azizoglu and Heidari (2021)21. Simulations are per-
formed only along the z-direction. A constant potential 
difference is applied on the two opposing faces in the 
z-direction, and no current flow across other faces. 
The simulation frequency ranges from 0.2 MHz to 
10 GHz, covering frequencies used in both logging 
while drilling electromagnetic, 0.4 to 2 MHz, and 
wireline dielectric logging tools, 20 MHz to 1 GHz22, 

23. All rock models are fully brine saturated. The brine 
salinity is 50 kppm NaCl, simulating seawater, and 
the temperature is 175 °F. The rock composition is 
assumed to be pure calcite. The relative permittivity 
and conductivity of the calcite used are 7 and 1/2,000 
S/m, respectively.

Results and Analysis
There are many factors that may affect dielectric 
constant measurements, including rock mineralogy, 
pore structure and porosity, saturating water salinity 
and saturation, and measurement temperature and 
frequency (dielectric dispersion). The most important 
factors in determining a rock’s dielectric constant are 
water filled porosity, i.e., porosity and water saturation, 
and pore structure. In the following discussions, all 
factors are kept the same except pore structure, more 
specifically, the amount of isolated porosity, which is 
the focus of this study.

The dielectric constant generally decreases with 
increasing frequency, while electric conductivity in-
creases with the increasing frequency. Figure 2 displays 
the simulated dispersion of the dielectric constant for 
model A with all pores disconnected or isolated, fi  = 
1.0. Two parameters are defined from the dispersion 
curve: the rate of permittivity change, S

rpc
, and the 

permittivity ratio, R
p
. 

The rate of permittivity change is the slope of the 
best fit line to the dispersion curve at a given frequency 
interval in the log-log plot (dashed line in Fig. 2): 

 4

where  is the dielectric constant, F is the frequency, 
and C is the fitting coefficient. Two frequency intervals 

Type 
of 
Model

Dimensions 
(# of Voxels)

Voxel 
Resolution 
(microns)

Total Porosity of Models (%)

fi = 0.0 fi = 0.25 fi = 0.5 fi = 0.75 fi = 1.0

A 1013 10.0 19.76 19.58 19.38 19.25 19.05

B 2023 4.50 20.03 19.95 19.84 19.76 19.68

fi = 0.0 fi = 0.1 fi = 0.2 fi = 0.25 fi = 0.30

C 2023 5.68 20.11 20.00 19.87 19.75 19.63

Table 1  The properties of digital rock models used in this dielectric dispersion simulation study, where fi represents the fraction of porosity that 
is disconnected.

Fig. 2  Simulated dielectric constant dispersion for model A with f
i
 = 1.0, in 

which all pores are isolated with each other. The dashed line is the curve 
fitting on the results at the frequency range of 30 MHz to 1 GHz.

= 1.0
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are used to fit the dispersion curve: one is from 30 MHz 
to 1 GHz, and the other from 100 MHz to 2 GHz; both 
within the frequency range of modern multifrequency 
dielectric logging tools22, 23. 

The permittivity ratio is defined as the permittivity 
difference between two given frequencies divided by 
the permittivity at the higher frequency:

  5

where  is the dielectric constant at the low frequency 
(30 MHz or 100 MHz in this study) and  is the 
dielectric constant at the high frequency, such as 1 GHz.

Figure 3 compares the dielectric constant’s disper-
sion of five type A models, in which their fractions 
of isolated porosities are 0, 0.25, 0.5, 0.75, and 1.0, 
respectively. It is observed that the dielectric constant 
increases as the fraction of isolated porosity increases, 
indicating the strong effect of the isolated porosity on 
the dielectric responses. In addition, the dispersion 
effect is relatively weak when all pores are connected, 
fi  = 0.0, while it becomes strong when all pores are 
isolated, fi  = 1.0, indicating the enhancement of the 
interfacial polarization (Maxwell-Wagner effect). 

As expected, the dielectric constant starts to converge 
from the frequency of 2 GHz for these five models, 
because their total porosities are almost the same, 

Table 1. In the high frequency range (F > 1 GHz), the 

interfacial polarization is largely attenuated or becomes 

negligible, while the dipolar polarization of water mol-

ecules becomes dominant, which depends on the total 

porosity. Figure 4 illustrates the best fit lines of the 

dielectric constant dispersion at the frequency interval 

of 30 MHz to 1 GHz (dashed rectangle area in Fig. 3). 

Figure 5 shows the relationship between the fraction 

of isolated porosity ( fi ) and the rate of the S
rpc

 as well 

as the R
p
 for the type A models. A second degree 

polynomial function can be used to best fit the data:

 6

and

 7

where A
1
, A

2
, A

3
, B

1
, B

2
, and B

3
 are the fitting coeffi-

cients, Table 2. 

The high determination coefficient indicates the 

existence of the correlation between the fraction of 

isolated porosity and the rate of permittivity change 

(or the permittivity ratio), i.e., the dielectric dispersion 

measurements can be used to characterize isolated 

porosities of porous media.

Similar types of correlations are also observed in type 

B and C models. Results from type A and B models 

are used as training data to derive a general analyt-

ical model for predicting the fraction of the isolated 

porosity from the rate of permittivity change or the 

permittivity ratio, while results from type C models 

are used as the test and validation data to compare 

the prediction performance of the analytical models.

Figures 6 and 7 show the comparison of the fraction 

of isolated porosity between the prediction, Eqns. 6 and 

7, and the design (true value). The analytical models 

are the second degree polynomial functions that best 

fit the data of models of type A and B at the frequency 

intervals of 30 MHz to 1 GHz and 100 MHz to 2 GHz, 

respectively. The fitting coefficients are given in Table 

2. The rate of permittivity change and permittivity 

ratio are the model inputs. The predicted fractions of 

the isolated porosity match well with the true values, 

Figs. 6 and 7, especially in the frequency range of 100 

MHz to 2 GHz, Fig. 7.

Discussion and Conclusions
This article presented a new methodology for the de-

termination of isolated porosity, or connected poros-

ity, of porous media from multifrequency dielectric 

measurements. The 3D dielectric dispersion modeling 

demonstrated the significant effect of the isolated poros-

ity on dielectric constant dispersion. When pores are 

disconnected, the dielectric constant variation is very 

sensitive to measurement frequency, while it is insen-

sitive to frequency when the pores are well connected. 

Two parameters were introduced to characterize the 

variation of dielectric constants at specific frequen-

cy intervals — the rate of permittivity change and 

permittivity ratio. Analytical functions were derived 

Fig. 3  The dielectric constant dispersion for the five type A models, with 
different isolated porosities.

Fig. 4  A comparison of the rate of permittivity change among the five type 
A models. The dashed lines are the best fitting to the results at the 
frequency interval of 30 MHz to 1 GHz.
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Fig. 5  The relationships of the fraction of isolated porosity vs. the rate of permittivity change (a) and the permittivity ratio (b), for type A models.

Table 2  Values of the fitting coefficients and the coefficient of determination, R2.

Frequency Interval of 30 MHz to 1 GHz

Type of Model A
1

A
2

A
3

R 2 B
1

B
2

B
3

R 2

A 7.65 -2.01 0.13 0.94 0.02 0.13 -0.06 0.94

A + B 5.30 -0.94 0.04 0.81 0.005 0.18 -0.09 0.80

Frequency Interval of 100 MHz to 2 GHz

A 13.02 -4.41 0.38 0.91 0.17 -0.07 -0.002 0.92

A + B 7.86 -1.85 0.11 0.85 0.08 0.13 -0.08 0.85

Fig. 6  A comparison of the fraction of isolated porosity between the 
design (diamond — true value) and the prediction (solid curve 
— fitting) from: (a) the rate of permittivity change, and (b) the 
permittivity ratio. Data are derived from the frequency interval 
of 30 MHz to 1 GHz. 

Fig. 7  A comparison of the fraction of isolated porosity between the 
design (diamond — true value) and the prediction (solid curve 
— fitting) from: (a) the rate of permittivity change, and (b) the 
permittivity ratio. Data are derived from the frequency interval 
of 100 MHz to 2 GHz. 

(a)

(b)
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from the simulation results to correlate the fraction of 

isolated porosity with the rate of permittivity change 

and the permittivity ratio, which enabled the prediction 

of isolated porosity from the dielectric measurements.

The dielectric constant depends on many factors, 

including rock and fluid properties and measurement 

conditions. In this study, all factors except pore struc-

ture were kept constant. Generalization of the derived 

analytical functions for other conditions requires fur-

ther investigation and validation. The spatial distribu-

tion of the isolated pores may also affect the dielectric 

constant dispersion, and studies are required to test 

and validate its effect.
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Network graphs represent a general language for describing complex systems and a framework for knowl-
edge discovery. Graph learning is a new concept with applications emerging in biomedicine, pharmacol-
ogy, smart mobility, and physical reasoning. When applied to petroleum systems, such as reservoir 
models, graphs provide unique differentiators for the abstraction of reservoir connectivity to facilitate 
“reservoir centric” machine learning applications. 

In this article, we demonstrate, for the first time, the application of Geoscience-based Deep Interaction 
Networks (GeoDIN) to learn complex physics relationships from 3D reservoir models for fast and accu-
rate prediction of subsurface spatiotemporal flow dynamics. We build the network graph with embedded 
subsurface and physics representations and train the machine learning model to “act like the reservoir 
simulator.” 

We use a simulation benchmark model for two-phase incompressible flow, with an approximate 1.1 
million grid size, one central injector and four corner producers. Static 3D grid properties include po-
rosity and permeability. We use a full physics simulation output to construct the interaction network 
graph, where graph node objects (nodes) represent reservoir grid cells. We embed the feature vector 
combining pore, oil, and water volumes, pressure, and relative permeability. The graph objects repre-
senting wells are connected with well completion factors. The producing wells have embedded oil and 
water production rates, while the objects representing injecting wells have embedded water injection 
rates. We represent graph relations (edges) with bidirectional transmissibility of the source cell. To pre-
process the data for machine learning, we scale the graph object attributes using “min-max” normaliza-
tion and we normalize the graph relation attributes using Box-Cox transformation. 

We train the GeoDIN framework to predict oil and water saturation dynamics in space and time. When 
benchmarked with full physics simulation, the interaction networks ran on two V100 GPUs and substan-
tially accelerated the prediction phase compared to a physics-based simulator running on 70 Intel Xeon 
E5 CPU cores. On average, the error in GeoDIN predicted spatiotemporal distribution of oil saturation 
remains within 5% of full physics simulation for 90% of the model grid cells, while the error in water 
saturation remains within 2.5% of full physics simulation. 

The spatiotemporal propagation of pressure is more sensitive to local embeddings of interaction net-
works, which communicate on node-to-node information transfer. This results in a larger prediction 
error of the GeoDIN model when benchmarked to full physics simulation. On average, the error distri-
bution suggests that a great majority (90% to 95%) of grid cells fall within 10% to 30% error bound, 
relative to the full physics simulation. 

The presented GeoDIN approach to network learning carries a game changing potential for prediction 
of subsurface flow dynamics. As the way forward, we will investigate implementation of graph neural 
networks (NN) with automated feature learning, generalization, and scale up.

GeoDIN — Geoscience-Based Deep Interaction 
Networks for Predicting Flow Dynamics in Reservoir 
Simulation Models
Dr. Marko Maucec and Ridwan S. Jalali 

Abstract  /

Introduction
Accurate numerical simulation of flow dynamics in subsurface reservoir systems lies at the heart of petroleum 
engineering and science. Reservoir simulation has become a standard tool for hydrocarbon reserve assessment, 
field development planning, and optimization and for strategic decision making purposes. The state-of-the-art 
simulation models of mature, real-life hydrocarbon assets can exceed hundreds of millions in grid-size, integrate 
thousands of wells and span decades of production history under various operational scenarios. Despite the wide 
expansion and deployment of massively parallelized high performance computing (HPC) clusters, novel GPU-based 
architectures and cloud computing, advanced reservoir simulation still poses extreme computational challenges 
to dynamic model calibration and optimization, long-term forecasting, and rigorous uncertainty and risk analysis.

Driven by advances in machine learning and deep learning, alternative approaches to predictive modeling and 
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simulations of complex petroleum systems’ behavior 
have been proposed in the form of physics informed, 
referred to as scientific machine learning, or SciML. 
By incorporating physical knowledge, constraints and 
conservation laws into machine learning and deep learn-
ing, one can potentially reduce the data requirements 
and dependency, significantly improve the predictive 
accuracy, statistical efficiency, interpretability and gen-
eralizability of the model, eliminate physically implau-
sible predictions from the search space and reduce the 
computational cost of models1. 

Recently, the amalgamation of data and physics gov-
erned machine learning and deep learning modeling in 
the energy and oil and gas domains has gained significant 
momentum in research and development. Zhao and 
Sarma (2018)2 introduce the data physics technology that 
combines the reservoir physics with machine learning 
and benchmark it against the conventional simulator for 
thermal recovery problems while dramatically reducing 
the computational run time. Klie et al. (2020)3 introduce 
the application of integrated transfer learning from pre-
viously learned full physics development scenarios to 
accelerate and optimize the execution of the forthcoming 
field development plan. 

Zhang et al. (2019)4 used the deep learning concepts 
combined with model reduction schemes to predict 
multiphase flow dynamics, while Jin et al. (2019)5 and 
Al-Sulaimani and Wheeler (2021)6 deploy physics-based 
reduced order modeling with Embed-to-Control frame-
work7 for multiphase surface flow simulation. Fraces et al. 
(2020)8 used physics informed neural networks (PINN) 
and apply transfer learning and generative methods to 
solve an inference problem for two-phase immiscible 
transport, while Wang et al. (2020)9, (2021)10 introduced 
the concept of the theory guided NNs to incorporate 
governing equations, boundary conditions and practical 
experience into multiphase flow prediction. 

In another approach, Thavarajah et al. (2021)11 trained 
a deep learning-based proxy model by full physics sim-
ulation output using the encoder-decoder NNs (convo-
lutional long short-term memory (LSTM)) to simulate 
fluid dynamics. While Cai et al. (2021)12 and references 
therein provide a review of PINNs for solving inverse 
problems in fluid mechanics, Fuks and Tchelepi (2020)13 
demonstrated that physics informed machine learning 
approaches fail to approximate the fluid flow dynam-
ics governed by nonlinear partial differential equations 
(PDEs) in the presence of sharp variations of saturation 
and propose the solution by adding a small amount of 
diffusion to the conservation equation. 

In our article, we approach the training of the machine 
learning and deep learning model with subsurface physics 
and solve the forward predictive problem by encoding the 
reservoir simulation model as a network graph. Network 
graphs represent a general language for describing com-
plex systems and a framework for knowledge discovery. 
Representation learning on graphs is a new concept with 
applications in biomedicine14, pharmacology and drug 
discovery15, smart mobility16 and physical reasoning and 
inference17. Recently, the applications of network graph 

modeling and learning were introduced for subsurface 
modeling and optimization18 using a hybrid artificial 
intelligence framework, and for learning to simulate 
complex physical19 and chemical processes20. 

When applied to reservoir models, graphs provide 
unique functionality for the abstraction of reservoir con-
nectivity and enable generalization from well centric to 
reservoir centric machine learning and deep learning 
applications. We leverage the concept of an interaction 
network framework21 and build the network graph with 
embedded subsurface and physics representations, and 
train the deep learning model to act like the reservoir 
simulator.

Models and Methods
Reservoir Simulation Model
We use the SPE1023 as a reference reservoir simulation 
model. The geological model represents a part of a Brent 
sequence described on a regular Cartesian grid with 
60 × 220 × 85 (1,122,000) cells. The model consists of 
two formations: a shallow marine Tarbert formation in 
the top 35 layers, where the permeability is relatively 
smooth, and a fluvial Upper-Ness permeability in the 
bottom 50 layers. Both formations are characterized by 
large permeability variations, with eight to 12 orders of 
magnitude, but are qualitatively different, Fig. 1. The 
porosity field is strongly correlated to the permeability, 
and about 2.5% of the blocks have zero porosity assigned 
as inactive.

The reservoir is produced using a water drive from a 
vertical well in the center of the reservoir with a constant 
injection rate of 5,000 stock tank barrels per day and 
produced from four vertical wells at the corners, each 
at a bottom-hole pressure of 4,000 psi. We simulated 
1,827 days of production assuming incompressible flow, 
running on 70 Intel Xeon E5 CPU cores of a highly 
parallelized HPC cluster.

Interaction Networks
The concept of modeling an interaction network was 
introduced21 to reason how objects in complex dynamic 
systems interact, to infer the abstract system properties 
and relations, and to enable dynamical predictions. The 
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Fig. 1  The SPE10 reservoir simulation model: 3D model renderings of X-permeability (left) and Z-
permeability (right) with a vertical central injector and the four corner producers, completed top to bottom.  
 
 
 

 
 
Fig. 2  A schematic of a GeoDIN model architecture. The model takes as input a graph that represents a 
system of objects, oj, in-between relations 〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟!〉! and external effects, xj. It establishes the pair-wise 
interaction terms, bk, and computes their effects, ek, via a relational model, fR(·), represented by the first 
feedforward neural network (FFNN). The ek are then aggregated and combined with the oj, to generate 
input (as cj), for an object model, fO(·), with a second FFNN, which predicts how the interactions and 
dynamics influence the objects, p. 
 
 
 
 
 
 
 

Fig. 1  The SPE10 reservoir simulation model: 3D model renderings of 
X-permeability (left) and Z-permeability (right) with a vertical central injector 
and the four corner producers, completed top to bottom.
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interaction network model represents the first, general 
purpose, learnable physics engine and was evaluated with 
experiments in several challenging physical domains: 
n-body problems, rigid-body collision, and nonrigid 
dynamics. 

In the simplified example to predict the dynamics of a 
single object, one may use an object centric function, fO, 
which takes the objects’ state, ot, as the input at time, t, and 
outputs the new states of the object, ot+1, at future time, 
t+1. Moreover, if the two or more objects are governed 
by the same dynamics, fO could be applied independently 
to predict the future states of such objects.

Consequently, if several objects interact with each 
other, the fO is insufficient because it does not capture 
the inter-object relationships. For example, when the 
first object, o1, defined as the sender, influences the 
second object, o2, defined as the receiver via directed 
interaction, the interaction network model introduces a 
relation centric function, fR, to predict the effect of this 
interaction, et + 1, on the receiving object o2. The fR takes 
as input the objects o1 and o2, as well the properties of 
their relationship, r:

 

 

 
  

Saudi Aramco: Company General Use 

et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
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The fO is modified so it can input both, the effect of 
interaction et+1 caused by r and the current state of the 
receiving object, o2,t, to predict the future (dynamic) state 
of the receiving object, o2,t+1:
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For larger and more complex systems, Battaglia et al. 
(2016)21 generalizes Eqn. 2 by introducing the model 
input in the form of a graph, G = ‹O, R›21. They assume 
an attributed, directed multigraph as the relations have 
attributes and there can be multiple distinct relations 
between two objects. For a system with NO objects and 
NR relations, Battaglia et al. (2016)21 defines the inputs 
to the interaction network as 

 

 

 
  

Saudi Aramco: Company General Use 

et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
 
𝑅𝑅 = {〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟𝑘𝑘〉𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅 
 
𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑂𝑂 
 
𝑋𝑋 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

. 
 
 
IN(G) = ∅𝑂𝑂(𝑎𝑎(𝐺𝐺, 𝑋𝑋, ∅𝑅𝑅(𝑚𝑚(𝐺𝐺)))     (3) 
 
 
𝑚𝑚(𝐺𝐺) = 𝐵𝐵 = {𝑏𝑏𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   𝑎𝑎(𝐺𝐺, 𝑋𝑋, 𝐸𝐸) = 𝐶𝐶 = {𝑐𝑐𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
𝑓𝑓𝑅𝑅(𝑏𝑏𝑘𝑘) = 𝑒𝑒𝑘𝑘     𝑓𝑓𝑂𝑂(𝑐𝑐𝑗𝑗) = 𝑝𝑝𝑗𝑗     (4) 
 
∅𝑅𝑅(𝐵𝐵) = 𝐸𝐸 = {𝑒𝑒𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   ∅𝑂𝑂(𝐶𝐶) = 𝑃𝑃 = {𝑝𝑝𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
 
𝑚𝑚(𝐺𝐺) = [𝑂𝑂𝑇𝑇𝑅𝑅𝑅𝑅; 𝑂𝑂𝑇𝑇𝑅𝑅𝑆𝑆; 𝑅𝑅𝐼𝐼] = 𝐵𝐵   (5) 
 
 
𝑎𝑎(𝐺𝐺, 𝐸𝐸) = [𝑂𝑂𝑇𝑇; �̅�𝐸] = 𝐶𝐶  (6)  

 
 
loss = MSE (𝑓𝑓𝑂𝑂(𝑜𝑜𝑗𝑗,𝑡𝑡, 𝑒𝑒𝑘𝑘), (𝑜𝑜𝑗𝑗,𝑡𝑡+1))  (7)  
 

, 

 

 

 
  

Saudi Aramco: Company General Use 

et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
 
𝑅𝑅 = {〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟𝑘𝑘〉𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅 
 
𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑂𝑂 
 
𝑋𝑋 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

. 
 
 
IN(G) = ∅𝑂𝑂(𝑎𝑎(𝐺𝐺, 𝑋𝑋, ∅𝑅𝑅(𝑚𝑚(𝐺𝐺)))     (3) 
 
 
𝑚𝑚(𝐺𝐺) = 𝐵𝐵 = {𝑏𝑏𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   𝑎𝑎(𝐺𝐺, 𝑋𝑋, 𝐸𝐸) = 𝐶𝐶 = {𝑐𝑐𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
𝑓𝑓𝑅𝑅(𝑏𝑏𝑘𝑘) = 𝑒𝑒𝑘𝑘     𝑓𝑓𝑂𝑂(𝑐𝑐𝑗𝑗) = 𝑝𝑝𝑗𝑗     (4) 
 
∅𝑅𝑅(𝐵𝐵) = 𝐸𝐸 = {𝑒𝑒𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   ∅𝑂𝑂(𝐶𝐶) = 𝑃𝑃 = {𝑝𝑝𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
 
𝑚𝑚(𝐺𝐺) = [𝑂𝑂𝑇𝑇𝑅𝑅𝑅𝑅; 𝑂𝑂𝑇𝑇𝑅𝑅𝑆𝑆; 𝑅𝑅𝐼𝐼] = 𝐵𝐵   (5) 
 
 
𝑎𝑎(𝐺𝐺, 𝐸𝐸) = [𝑂𝑂𝑇𝑇; �̅�𝐸] = 𝐶𝐶  (6)  

 
 
loss = MSE (𝑓𝑓𝑂𝑂(𝑜𝑜𝑗𝑗,𝑡𝑡, 𝑒𝑒𝑘𝑘), (𝑜𝑜𝑗𝑗,𝑡𝑡+1))  (7)  
 

 where 

 

 

 
  

Saudi Aramco: Company General Use 

et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
 
𝑅𝑅 = {〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟𝑘𝑘〉𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅 
 
𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑂𝑂 
 
𝑋𝑋 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

. 
 
 
IN(G) = ∅𝑂𝑂(𝑎𝑎(𝐺𝐺, 𝑋𝑋, ∅𝑅𝑅(𝑚𝑚(𝐺𝐺)))     (3) 
 
 
𝑚𝑚(𝐺𝐺) = 𝐵𝐵 = {𝑏𝑏𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   𝑎𝑎(𝐺𝐺, 𝑋𝑋, 𝐸𝐸) = 𝐶𝐶 = {𝑐𝑐𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
𝑓𝑓𝑅𝑅(𝑏𝑏𝑘𝑘) = 𝑒𝑒𝑘𝑘     𝑓𝑓𝑂𝑂(𝑐𝑐𝑗𝑗) = 𝑝𝑝𝑗𝑗     (4) 
 
∅𝑅𝑅(𝐵𝐵) = 𝐸𝐸 = {𝑒𝑒𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   ∅𝑂𝑂(𝐶𝐶) = 𝑃𝑃 = {𝑝𝑝𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
 
𝑚𝑚(𝐺𝐺) = [𝑂𝑂𝑇𝑇𝑅𝑅𝑅𝑅; 𝑂𝑂𝑇𝑇𝑅𝑅𝑆𝑆; 𝑅𝑅𝐼𝐼] = 𝐵𝐵   (5) 
 
 
𝑎𝑎(𝐺𝐺, 𝐸𝐸) = [𝑂𝑂𝑇𝑇; �̅�𝐸] = 𝐶𝐶  (6)  

 
 
loss = MSE (𝑓𝑓𝑂𝑂(𝑜𝑜𝑗𝑗,𝑡𝑡, 𝑒𝑒𝑘𝑘), (𝑜𝑜𝑗𝑗,𝑡𝑡+1))  (7)  
 

 and

 

 

 
  

Saudi Aramco: Company General Use 

et+1 = 𝑓𝑓𝑅𝑅(o1,t, o2,t, r)           (1) 
 
 
o2,t+1 = 𝑓𝑓𝑂𝑂(o2,t, et + 1)           (2) 
 
 
𝑂𝑂 = {𝑜𝑜𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

, 
 
𝑅𝑅 = {〈𝑖𝑖, 𝑗𝑗, 𝑟𝑟𝑘𝑘〉𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅 
 
𝑖𝑖 ≠ 𝑗𝑗, 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑂𝑂 
 
𝑋𝑋 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑜𝑜

. 
 
 
IN(G) = ∅𝑂𝑂(𝑎𝑎(𝐺𝐺, 𝑋𝑋, ∅𝑅𝑅(𝑚𝑚(𝐺𝐺)))     (3) 
 
 
𝑚𝑚(𝐺𝐺) = 𝐵𝐵 = {𝑏𝑏𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   𝑎𝑎(𝐺𝐺, 𝑋𝑋, 𝐸𝐸) = 𝐶𝐶 = {𝑐𝑐𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
𝑓𝑓𝑅𝑅(𝑏𝑏𝑘𝑘) = 𝑒𝑒𝑘𝑘     𝑓𝑓𝑂𝑂(𝑐𝑐𝑗𝑗) = 𝑝𝑝𝑗𝑗     (4) 
 
∅𝑅𝑅(𝐵𝐵) = 𝐸𝐸 = {𝑒𝑒𝑘𝑘}𝑘𝑘=1…𝑁𝑁𝑅𝑅   ∅𝑂𝑂(𝐶𝐶) = 𝑃𝑃 = {𝑝𝑝𝑗𝑗}𝑗𝑗=1…𝑁𝑁𝑂𝑂

 
 
 
𝑚𝑚(𝐺𝐺) = [𝑂𝑂𝑇𝑇𝑅𝑅𝑅𝑅; 𝑂𝑂𝑇𝑇𝑅𝑅𝑆𝑆; 𝑅𝑅𝐼𝐼] = 𝐵𝐵   (5) 
 
 
𝑎𝑎(𝐺𝐺, 𝐸𝐸) = [𝑂𝑂𝑇𝑇; �̅�𝐸] = 𝐶𝐶  (6)  

 
 
loss = MSE (𝑓𝑓𝑂𝑂(𝑜𝑜𝑗𝑗,𝑡𝑡, 𝑒𝑒𝑘𝑘), (𝑜𝑜𝑗𝑗,𝑡𝑡+1))  (7)  
 

 . The O represents the states of each object 
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The marshalling function m, rearranges the objects 
and relations into pair-wise interaction terms and com-
pute their effects, ek, via relational model, ΦR, using the 

relation centric function, fR(·). The aggregation function 
a, aggregates the ek and combines them with oj and xj, 
to generate the input for an object model, ΦO, using 
the object-centric function, fO(·). The fO(·) predicts how 
the object’s interactions, dynamics, and external effects 
influence the behavior of objects. This basic interaction 
network can predict the evolution of the states in a dy-
namic system, and for physical simulation, P may equal 
to the future (predicted) states of the objects, Ot+1. For 
further details on mathematical frameworks and nota-
tions related to interaction network modeling, refer to 
Battaglia et al. (2016)21.

Geoscience-Based Deep Interaction Networks 
(GeoDIN)

The concept of an interaction network is … agnostic to 
the choice of functions and algorithms …, for a learnable 
implementation capable of reasoning about complex 
systems with nonlinear relations and dynamics21. In our 
work, we formalize and expand the implementation to the 
domain of petroleum systems and develop Geoscience-
based Deep Interaction Networks (GeoDIN) to predict 
complex fluid-flow dynamics in reservoir simulation 
models. In Fig. 2, we partially reproduce Fig. 1 from 
Battaglia et al. (2016)21 to schematize the architecture 
of the GeoDIN with an annotated forward calculation. 
Data Abstraction: We parse the output of the simulation 
run from an in-house, full physics, massively parallelized 
reservoir simulator24. The data format of the simulation 
output is a customized format for reading and writing 
the result files from the Eclipse reservoir simulator25. We 
build a network graph with object/node and relation/
edge attributes and types, Table 1. To preprocess the data 
for machine learning, we scale the graph object attri-
butes using “min-max” normalization and we normalize 
the graph relation attributes, i.e., cell transmissibility 
(TRANS ), using Box-Cox transformation. Relation/
edge types were one-hot encoded into a vector of size 3.

In Fig. 3, we show examples of network graph rep-
resentations for the reservoir simulation grid, Nx = 3, 
Ny = 3, Nz = 1 (left), and Nx = 10, Ny = 10, Nz = 3 
(right), where graph edges are color-coded with source 
TRANS and graph nodes are color-coded with cell oil 
saturation, SOIL.

The dimensionality of the relations vector (the num-
ber of graph edges, NR) is a dynamic, simulation case 
dependent variable: as indicated in Fig. 3, the 3 × 3 × 1 
simulation grid (with only lateral grid communication via 
x- and y-transmissibility) results in a graph representation 
with 24 relations/edges. The 10 × 10 × 3 simulation grid 
on the other hand, renders 1,480 relations/edges that 
account for both, the lateral and vertical (multilayer) grid 
communication, embedded with full, 3D transmissibility 
tensor. The network graph representations of reservoir 
simulation grids become significantly more complex 
when additional abstractions of grid connectivity are 
integrated, such as sealing faults or fracture networks 
or models with unstructured grids and the presence of 
nonneighbor connections.
Implementation: We define an array of objects (O) as the 
NO × DS array. The columns correspond to the number 
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of graph objects, NO = Ngc + Npw + Niw, where Ngc, Npw, 
and Niw represent the number of simulation grid cells, 
the number of producing, and the number of injecting 
wells, respectively. The rows correspond to the objects’ 
DS length state vector and DS = DSDyn + DSStat + X. In 
the GeoDIN model, the elements of the state vector are 
categorized as:

• Dynamic state variables, DSDyn, that combine cell 
attributes such as SOIL, water saturation, SWAT, and 

reservoir pressure, PRESS, subject to a spatiotemporal 
update in each time step of the GeoDIN prediction.

• Static state variables, DSStat, that combine cell at-
tributes like porosity, POROS, and permeability, 
PERM, tensors as well as pore volume, PORVOL, 
which was used to constrain the NN while training 
with simulation data and limit error accumulation 
in predicted barrels of fluid. The object’s model was 
augmented with relative permeability to capture 

Fig. 2  A schematic of a GeoDIN model architecture. The model takes as input a graph that represents a system of objects, oj, in between relations 
‹i, j, rk›k and external effects, xj. It establishes the pair-wise interaction terms, bk, and computes their effects, ek, via a relational model, fR(·), 
represented by the first feedforward neural network (FFNN). The ek are then aggregated and combined with the oj, to generate input (as cj), 
for an object model, fO(·), with a second FFNN, which predicts how the interactions and dynamics influence the objects, p.

Object/Node 
(object state  
variables: DS )

Attribute

Oil saturation DSDyn
SOIL

Water saturation SWAT

Pressure PRESS

Pore volume PORVOL

Porosity POROS

Permeability tensor DSStat
PERM

Connate water saturation (0.2; constant) SWC

Oil-water relative permeability endpoints KRW, KROW

Oil Production Rate (Producer) WOPR

Water Production Rate (Producer) X WWPR

Water Injection Rate (Injector) WWIR

Relation/Edge
(relation variables: DR )

Attribute
Transmissibility tensor of source cell TRANS

Well completion factor CF

Type

Simulation Grid Cells DIFFUSE

Producing Wells PRODUCE

Injecting Wells INJECT

Table 1  Features and encodings of a GeoDIN graph.

Network graph
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correct two-phase flow dynamics and note-to-node 
information transfer of spatiotemporal fluid propa-
gation in the training phase. Encoding the relative 
permeability parameters, i.e., connate water satura-
tion, SWC, and oil-water endpoints, KRW, KROW, 
as a Corey function, Fig. 4, instead in its tabular 
form, accelerates the deep NN training.

• Operational state variables, X, that combine well 
attributes such as the oil production rate, WOPR, 
and water production rate, WWPR, for producers and 
water injection rate, WWIR, for injectors, encoded 
as control variables, representing well operational 
constraints per each time step.

The relations (R) are represented as a triplet R = ‹RR , 
RS , RI›, where:

• RR and RS are NO × Ng arrays, which index the receiver 
and sender objects, respectively.

• RI represents the DR × NR array where DR sums 
over the number or relation attributes and types. 
In GeoDIN, we encode two relation types: bidirec-
tional TRANS and well completion factor, CF. Both, 
the TRANS and CF are continuous variables. The 
relation type is one-hot encoded into a vector of size 
3 with categorical representation of how interacting 
objects in the triplet R exchange the information 
(DIFFUSE for grid cell-to-cell communication and 
PRODUCE/INJECT for well-to-cell communication), 
which makes DR a vector of size 5. In the GeoDIN 
experiments, where all the wells were top-to-bottom 
vertical wells, the corresponding well CFs are set to 
CF = 1. The generalization of the GeoDIN model 
to incorporate, e.g., slanted wells, would encode CF 
≠ 1 values.

The j-th columns of the RR and RS arrays represent 
one-hot encoding vectors that indicate the receiver and 

sender object’s indices, respectively.
The m computes21 the matrix products OTRR (dim(OTRR) 

= DS × NR) and OTRS (dim(OTRS) = DS × NR) and con-
catenates them vertically with RI:
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The resulting B is a (2DS + DR) × NR array, whose 
columns represent the interaction terms bk for the NR 
relations or edges in graph G. As indicated in Fig. 2, 
in GeoDIN implementation the X are encoded as well 
object attributes into m.

B represents an input to ΦR, which applies fR(·), a NN, 
to each array column. In such manner, the ΦR predicts 
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Fig. 3  The network graph representations for the reservoir simulation grid (3 × 3 × 1; left) and (10 × 10 × 
3; right). 
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Fig. 4  The encoded relative permeability function used to augment the GeoDIN object’s model. 
 
 
 
 
 
 
 

y = 2.78x2 - 1.11x + 0.11

y = 2.78x2 - 4.45x + 1.78

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

KRW KROW Poly. (KRW) Poly. (KROW)

Fig. 4  The encoded relative permeability function used to augment the GeoDIN 
object’s model.
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the effect of each interaction ek by applying fR(·) to each bk. 
The output of fR(·) is a DE length effect vector, ek, which 
represents an embedded distribution of calculated effects 
on objects (O). The role of ΦR is to concatenate the NR 
effects to form the DE × NR effect array, E.

G and E are input to aggregation function a, which 
computes the DE × NO matrix product, Ē = ERT

R, whose 
j-th column equals to element-wise summation over all 
ek whose corresponding relation has a receiver object, oj.
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The resulting C is a (DSDyn + DE) × NO array whose NO 
columns are the object states and per object aggregated 
interaction effects. 

To clarify, the GeoDIN model is applied to solve a 
forward problem, to predict the evolution of dynamic 
state variables, i.e., the future t+1 states of SOIL, and 
SWAT, and PRESS, while the state updates are not ap-
plied to DSStat. Should the application of GeoDIN be 
reformulated to solve the inverse problem, e.g., static 
model reconciliation with dynamic data, referred to as 
history matching, then the array C of the aggregated 
interaction effects would combine both, DSDyn and DSStat.

C is input to ΦO, which applies fO(·), another NN, to each 
NO column. The output of fO(·) is a DP length vector, pj, and 
ΦO concatenates them to form the output array P (dim(P ) 
= 3 × NO) of which components are predicted vectors 
of SOIL, SWAT, and PRESS per simulated time step.

We train the GeoDIN using multiple hidden layers with 
various numbers of neurons, gated by the ReLU activation 
function and optimized with a stochastic gradient-based 
optimizer (ADAM)26. The GeoDIN is comprised of two 
FFNNs: the first FFNN, the ΦR, calculates the ek, and 
the second FFNN, the object model, learns to apply this 
ek on the oj. During training, the objective is to minimize 
the loss of the object model, defined as a mean square 
error (MSE) between the model’s prediction and the 
full physics simulation, per simulation time step, across 
all the objects:
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At this point it is worth clarifying that GeoDIN does not 
incorporate an explicit time integration as perceived for 
and implemented in the PINN frameworks8. In GeoDIN, 
the flow physics is captured from simulation models by 
learning object-to-object interaction terms and computing 
their effects to predict the next object states. As such, 
the GeoDIN loss function only incorporates data-driven 
terms. In PINNs, however, the flow physics is emulated, 
and loss function combines the terms for solving flow 
governing PDEs, the terms with associated initial and 
boundary conditions as well as data-driven terms. In 
Maucec and Jalali (2021)27 we further demonstrate the 
assembly of the O and R arrays with implementation on 
a simplified example of 3 × 3 × 1 simulation grid with a 
corner injector and producer.
Experiments: We use the data for 800 days out of 1,827 
days of simulated production for training. The FFNN was 
trained for 500 epochs. Figure 5 shows the convergence 

of model loss function and the convergence of the mean 
cell error as a contribution from the individual predicted 
response terms, SOIL, SWAT, and PRESS. 

In Table 2 we list the GeoDIN model training time, for 
models presented in Fig. 6. The timing values correspond 
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Fig. 5  The training error convergence of the GeoDIN model: (a) the model loss as MSE between the 
model’s prediction and the full physics simulation, and (b) contribution of individual predicted response 
terms, SOIL, SWAT, and PRESS, to the cell mean error. 
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Fig. 5  The training error convergence of the GeoDIN model: (a) the model loss as 
MSE between the model’s prediction and the full physics simulation, and (b) 
contribution of individual predicted response terms, SOIL, SWAT, and PRESS, 
to the cell mean error.

No. of Layers Training (min)

3 4.4

5 3.3

10 7.7

20 15.4

40 30.3

80 N/A

Table 2  The GeoDIN model training time for models 
presented in Fig. 6.
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to the use of a single GPU for all the models. The 80-layer 
model was not used for training to avoid memory alloca-
tion problems. Note that the training time values, as listed 
do not correspond to run time. They are only reported 
for evaluation purposes, but not used for prediction. 

The prediction performance of the GeoDIN model 
was benchmarked against the full physics simulation 
run. The full physics simulation runs were performed 
on 70 Intel Xeon E5 CPU cores. The prediction period 
was 1,827 days. In Fig. 6, we show the run time perfor-
mance as a function of the model size, by increasing the 
number of vertical layers from 3, 5, 10, 20, and 40, to 80. 
For the model sizes with a number of layers up to 40, a 
single V100 GPU was used to run the GeoDIN model 
predictions, for the model with 80 vertical layers, two 
GPUs were used to meet the memory requirements. 
Herewith, the run time corresponds to the rollout of 
1,827 daily time steps in prediction mode.

While the predictive run time performance of full phys-
ics and GeoDIN model is comparable for the smallest 
model size (after discounting for the difference in hard-
ware), the later model demonstrates significantly faster 
prediction for larger size models. In particular, when 
using the two GPUs vs. 70 CPUs, the GeoDIN prediction 
is almost five times faster. 

In Fig. 7 we compare the number of relations (graph 
edges in the GeoDIN model) and the size of underlying 
simulation grid model as a function of the number of K-
layers in the represented SPE10 model. The annotated 
trendlines indicate a linear dependence on the number 
of K-layers for both, the simulation grid size and the 
number of graph relationships. Consequently, the size 
of the graph increases approximately six times faster 
than the size of the grid. In practical terms, this suggests 
that with model scale up, the expansion of the network 
graph, as a representation of the reservoir simulation 
grid, potentially poses a challenge for interaction network 
training, due to the GPU memory limitations.

We have performed three prediction experiments with 
GeoDIN while benchmarking against a full physics res-
ervoir simulator. It is important to note that the same 
full physics simulation model with three top layers from 
the upper shallow marine formation, was used to train 
all three GeoDIN predictive models. 

1. Experiment 1: Perform prediction of spatiotem-
poral dynamics of SOIL, SWAT, and PRESS in the 
same three model layers as used for training. SOIL 
and SWAT were predicted independently and not 
constrained by the mass conservation equation for 
two-phase flow, i.e., SOIL + SWAT = 1. We have 
considered such an approach to investigate the pre-
dictive capability of the GeoDIN framework when 
generalized to three-phase gas/oil/water systems. The 
derivation of a gaseous component from three-phase 
mass conservation equation as SGAS = 1 – SOIL – 
SWAT, requires the independent prediction of oil and 
water components. 

2. Experiment 2: Do not retrain the GeoDIN model, 
relocate the water injector to a different position in the 

simulation grid (Fig. 8; top row) and perform predic-
tion of spatiotemporal dynamics of SOIL, SWAT, and 
PRESS in the same three-layer model. The objective 
of this experiment was to investigate how accurately 
the GeoDIN model can capture spatiotemporal flow 
dynamics with perturbed injector location, mimicking 
a stage of simplified infill drilling plan. 

3. Experiment 3: As previously outlined, the SPE10 
reservoir model under study consists of two distinc-
tive formations, where in the top 35 shallow marine 
layers the permeability is relatively smooth, while in 
the bottom 50 layers follows a fluvial channel spatial 
distribution (Fig. 8; bottom row). Both formations are 
characterized by large permeability variations between 
eight to 12 orders or magnitude. The objectives of this 
experiment were to:
• Learn the representative fluid flow dynamics in 
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Fig. 6  The run time performance of the GeoDIN model (orange) against the full physics simulation model 
(blue) as a function of the model size for the rollout of 1,827 daily time steps in prediction mode. 
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Fig. 6  The run time performance of the GeoDIN model (orange) against the full 
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rollout of 1,827 daily time steps in prediction mode.
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Fig. 7  The number of relations (graph edges in GeoDIN model; orange) and grid cells in the underlying 
full physics simulation model (blue) vs. number of K-layers.  
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shallow marine subsurface depositions and predict 
the spatiotemporal flow dynamics in the 85-layer 
model.

• Compare GeoDIN predicted spatiotemporal flow 
dynamics in a layer, selected from the bottom for-
mation with the full physics simulation model. 

The SPE10 simulation grid contains approximately 
2.5% of inactive cells. In the simulation model, the 
inactive cells are assigned zero porosity and are not 
considered in flow calculations with full physics PDE 
solvers. In GeoDIN, we remove inactive cells from the 
graph, i.e., we ignore inactive cells when we convert 
the simulation model grid to a graph. Subsequently, 
we maintain one-on-one correspondence or mapping 
between the simulation grid and the generated graph 
by preserving the exact spatial location of inactive cells 
when the graph is converted back to the grid. In visual-
ization of pressure and saturation maps, the inactive cells 
appear as dark-color clusters or ghost regions of points, 
Fig. 8. The same correspondence applies to pressure and 
saturation maps, previously noted. 

Results
Experiment 1: Prediction of Fluid Flow Dynamics in 
Three-Layer Model

Figures 9 to 11 provide a comparison between the 
GeoDIN prediction and full physics simulation for the 
SOIL, SWAT, and PRESS, respectively. We visualize 
the property maps for a selected layer (K = 2) of the 

three-layer simulation model. The represented fluid flow 
dynamics corresponds to a centrally located injector. 

The presentation format is as follows:
• The top panel shows the snapshots of dynamic flow 

property predicted with the GeoDIN model at four 
time steps: 3 days, 500 days, 1,000 days, and 1,600 
days.

• The central panel shows the snapshots of dynamic 
flow property predicted with a full physics simulator 
at the same time steps.

• The bottom panel shows the spatial map of a loga-
rithm (for visualization purposes) square error per 
cell between the GeoDIN predicted and full physics 
simulated dynamic flow property at the same time 
steps.

• The unified color scales used are green for oil, blue for 
water, magenta for pressure, and red for square error.

Figure 12 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
simulation for SOIL, SWAT, and PRESS, respectively, 
as a function of the simulation/prediction time step. 
The statistical error analysis corresponding to the final 
time step — end of simulation/prediction — indicates 
that the mean absolute error in SOIL is approximately 
2%. The error distribution suggests that 50% of grid 
cells fall within a 4% error bound, while 90% of the 
grid cells fall within a 5% error bound. For SWAT, the 
mean absolute error is approximately 0.5%. The er-
ror distribution suggests that 50% of the grid cells fall 
within a 1.5% error bound, while 90% of the grid cells 
fall within a 2.5% error bound. For the PRESS, while 
the mean absolute error is approximately 5%, the error 
distribution suggests that 90% of grid cells fall within a 
20% error bound, indicating that the GeoDIN model 
prediction overestimates the simulated pressure.

The spatiotemporal propagation of pressure is more 
sensitive to local embeddings of interaction networks, 
which communicate on node-to-node information trans-
fer. The representation of reservoir pressure dynamics 
in the SPE10 model is governed by initial pore fluid 
distribution. This characterizes pressure as a global phys-
ics property, establishing several orders of magnitude 
faster than the fluid convection speed11. The external 
pressure support comes in the form of a single water 
injector, and in training, the GeoDIN framework fails to 
capture meaningful small variability in induced pressure 
dynamics, which results in a larger prediction error when 
benchmarked with full physics simulation.

Experiment 2: Prediction of Fluid Flow Dynamics in 
Three-Layer Model with Relocated Water Injector

Figures 13 to 15 provide a comparison between the 
GeoDIN prediction conducted in Experiment 2, and 
full physics simulation for SOIL, SWAT, and PRESS, 
respectively. We visualize the property maps for a se-
lected layer (K = 2) of the three-layer simulation model. 
The represented fluid flow dynamics corresponds to a 
relocated water injector, as previously discussed.

Figure 16 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
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Fig. 8  The visualization of information complimentary to a specific GeoDIN prediction experiment: 
relocation of the water injector in the simulation grid in Experiment 2 (top) and visualization of X-
permeability in distinctive formations, corresponding to top shallow marine formation and bottom fluvial 
channel formation in Experiment 3 (bottom). In the top panel, the appearance of dark-colored clusters of 
points, corresponding to inactive cells is marked for clarification. 
 

 
 
Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells.  
 

Fig. 8  The visualization of information complimentary to a 
specific GeoDIN prediction experiment: relocation 
of the water injector in the simulation grid in 
Experiment 2 (top) and visualization of X-permeability 
in distinctive formations, corresponding to top 
shallow marine formation and bottom fluvial channel 
formation in Experiment 3 (bottom). In the top 
panel, the appearance of dark-colored clusters of 
points, corresponding to inactive cells is marked for 
clarification.
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Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 8  The visualization of information complimentary to a specific GeoDIN prediction experiment: 
relocation of the water injector in the simulation grid in Experiment 2 (top) and visualization of X-
permeability in distinctive formations, corresponding to top shallow marine formation and bottom fluvial 
channel formation in Experiment 3 (bottom). In the top panel, the appearance of dark-colored clusters of 
points, corresponding to inactive cells is marked for clarification. 
 

 
 
Fig. 9  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells.  
 

Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells. 
 
 
 
 

 
 
Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics 
simulation for a selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The 
dark-colored clusters of points correspond to inactive cells. 
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Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-
layer simulation model (Experiment 1) over time. The dark-colored clusters of points correspond to inactive cells.

 

 

 
  

Saudi Aramco: Company General Use 

 
 
Fig. 10  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The dark-colored 
clusters of points correspond to inactive cells. 
 
 
 
 

 
 
Fig. 11  A comparison of normalized PRESS maps between the GeoDIN prediction and full physics 
simulation for a selected layer (K = 2) of the three-layer simulation model (Experiment 1) over time. The 
dark-colored clusters of points correspond to inactive cells. 
 
 

Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in a three-
layer simulation model (Experiment 1), over time.
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Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model (Experiment 1), over time. 
 

 
 
Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 
 



12 The Aramco Journal of Technology Spring 2022

Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 12  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model (Experiment 1), over time. 
 

 
 
Fig. 13  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 
 

Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

 
 
Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 



13 The Aramco Journal of Technology Spring 2022

Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 2) of the three-layer 
simulation model with relocated injector (Experiment 2), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 14  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

 
 
Fig. 15  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 2) of the three-layer simulation model with relocated injector (Experiment 2), over 
time. The dark-colored clusters of points correspond to inactive cells. 
 
 
 

Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in a three-
layer simulation model with relocated injector (Experiment 2), over time.
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Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model with relocated injector (Experiment 2), 
over time. 
 
 
 
 

 
 
Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
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Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.

 

 

 
  

Saudi Aramco: Company General Use 

 
 

 
 
Fig. 16  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in a three-layer simulation model with relocated injector (Experiment 2), 
over time. 
 
 
 
 

 
 
Fig. 17  A comparison of SOIL maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
 
 
 
 
 

Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells.  
 
 
 

 
 
Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
clusters of points correspond to inactive cells. 
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simulation for SOIL, SWAT, and PRESS, respectively, 
as a function of simulation/prediction time step. The 
statistical error analysis corresponding to the final time 
step — end of simulation/prediction — indicates the 
mean absolute error in SOIL is approximately 2%. The 
error distribution suggests that 50% of the grid cells fall 
within a 3% error bound, while 90% of the grid cells 
fall within a 4.5% error bound. For SWAT, the mean 
absolute error is approximately 0.5%. The error distri-
bution suggests that 50% of the grid cells fall within a 
1% error bound, while 90% of the grid cells fall within 
a 2.5% error bound. For PRESS, the mean absolute 
error is approximately 23%, while the error distribution 
suggests that 90% of the grid cells fall within a 10% to 
30% error bound, indicating that the GeoDIN model 
prediction overestimates the simulated reservoir pressure. 
The physical reasoning behind the phenomenon refers 
to the explanation previously discussed. 

Experiment 3: Prediction of Fluid Flow Dynamics in 
Distinctively Different Formation of 85-Layer Model

In experiment 3, the GeoDIN model was trained with 
the three-layer full physics simulation model of the 
upper formation and learned the representative fluid 
flow dynamics in the upper shallow marine subsurface 
depositions. The model was then used to predict the 
spatiotemporal flow dynamics in the 85-layer model. 
We visualize the fluid distribution maps in a selected 
layer (K = 55) corresponding to the lower fluvial channel 

formation of the 85-layer simulation model. Figures 17 to 
19, respectively, correspond to SOIL, SWAT, and PRESS. 

The results demonstrate the ability of the GeoDIN 
model to learn the fluid dynamics from the three-layer 
model and accurately generalize the interaction effects 
on a larger — 85-layer — simulation grid model with 
distinctively different distribution of matrix permeability, 
spatially, and by magnitude. We augment the outcome by 
interpreting Fig. 20, which shows the results of TRANS 
normalization for data points corresponding to active 
cells, using Box-Cox transformation. The upper row 
corresponds to the transmissibility from three-layer 
simulation model used for GeoDIN training, while the 
bottom row corresponds to transmissibility of the 85-layer 
model used for prediction. 

The TRANS, extracted from the full physics simulation 
output, is severely right-skewed and resembles power law 
distribution with extreme values reaching up to 600,000. 
The transformation of the TRANS into a distribution that 
resembles normality is essential because in general, for 
the NNs, the learning from highly imbalanced data with 
power-law-like distributions can be quite challenging. 
Moreover, since transmissibility represents the main 
relation/edge attribute in the network graph model that 
controls cell-to-cell communication via diffusivity, the 
outlier removal is not recommended.

It is interesting to observe that the Box-Cox transfor-
mation of model transmissibility renders a multimodal 

Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a selected layer (K = 55) of the 85-layer 
simulation model (Experiment 3), over time. The dark-colored clusters of points correspond to inactive cells.
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Fig. 18  A comparison of SWAT maps between the GeoDIN prediction and full physics simulation for a 
selected layer (K = 55) of the 85-layer simulation model (Experiment 3), over time. The dark-colored 
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Fig. 19  A comparison of PRESS maps between the GeoDIN prediction and full physics simulation for a 
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distribution for the 85-layer model, which clearly indi-
cates the presence of distinctive formations as well as 
flow units in a subsurface model. Moreover, as shown by 
the boxplots in the right column of Fig. 20, the shapes 
of transformed density distributions of three-layer and 
85-layer models are statistically sufficiently similar for 
GeoDIN to learn spatial fluid dynamics in the three-lay-
er model and accurately predict in the 85-layer model. 

Figure 21 outlines the boxplots of per cell error distri-
bution for the GeoDIN prediction relative to full physics 
simulation for the SOIL, SWAT, and PRESS, respectively, 
as a function of simulation/prediction time step. The 
statistical error analysis corresponding to the final time 
step — end of simulation/prediction — indicates the 
mean absolute error in SOIL is approximately 2%. The 
error distribution suggests that 50% of the grid cells fall 
within a 3.8% error bound, while 90% of the grid cells 
fall within a 4.5% error bound. For the SWAT, the mean 
absolute error is approximately 0.5%. The error distri-
bution suggests that 50% of the grid cells fall within a 
1.5% error bound, while 90% of the grid cells fall within 
a 2.5% error bound. For PRESS, the mean absolute 
error is approximately 8%, while the error distribution 
suggests that 95% of the grid cells fall within a 20% error 
bound, indicating that the GeoDIN model prediction 
underestimates the simulated reservoir pressure. The 
physical reasoning behind the phenomenon refers to the 
explanation previously discussed.

Discussion
We introduced the GeoDIN framework that learns 
complex representations of subsurface from reservoir 
simulation models and predicts 3D flow dynamics. We 
conducted various experiments and demonstrated that, on 
average, the error in GeoDIN predicted spatiotemporal 
distribution of SOIL remains within 5% of full physics 
simulation for 90% of the model grid cells, while the 
error in SWAT remains within 2.5% of the full physics 
simulation. 

Subsequently, with its current architecture, the GeoDIN 
cannot accurately predict the well production rates for 
oil and water. The GeoDIN is based on the concept of 
interaction networks21, initially developed and validated 
for tasks of physical reasoning such as predicting potential 
energy of n-body systems, where n interacting objects 
are of the same type and result in n(n-1) relations to learn 
meaningful interactions caused by exerting distance and 
mass dependent forces on each other. 

As previously described, the GeoDIN graph repre-
sentation of the reservoir simulation model embodies 
two types of objects (nodes): grid cells and wells. The 
dominant interaction dynamics occurs at cell-to-cell 
level and the three-layer model, used in our training 
experiments, renders almost 200,000 relations (graph 
edges in the GeoDIN model) to accurately learn mean-
ingful cell-to-cell flow dynamics by interaction networks. 

In GeoDIN, CFs are used to one-hot encode wells 

Fig. 20  Results of transmissibility normalization for data points corresponding to active cells, using Box-Cox transformation.
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Fig. 20  Results of transmissibility normalization for data points corresponding to active cells, using Box-
Cox transformation.  
 
 

 
 
Fig. 21  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in the 85-layer simulation model (Experiment 3), over time. 
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into a network graph. In the three-layer model, used 
for training, encoding five wells (one injector and four 
producers), completed top-to-bottom results in 15 well-
to-cell relations. This is orders of magnitude lower than 
the number of cell-to-cell relations and insufficient for 
interaction networks to learn meaningful well-to-cell 
dynamics and accurately predict well rates. Alternative 
approaches can be investigated to improve the prediction 
of well rates in GeoDIN models: (a) predict flow saturation 
within drainage regions of perforated/completed well cells 
with interaction networks (expansion to drainage regions 
will increase the number of corresponding well-to-cell 
relations) and use separate machine learning models 
such as multilayer perception, LSTM, or recurrent NN 
to predict well rates as time series, and (b) modify the 
loss function to penalize for the well-to-cell interactions 
in prediction of well rates. 

Conclusions
GeoDIN is a novel proof-of-concept technology with 
applications to graph learning from reservoir simula-
tion models that carries a game changing potential for 
rapid prediction of subsurface flow dynamics. For SOIL 
and SWAT, the GeoDIN model prediction generalizes 
efficiently to capture the interaction effects on a larger 
simulation grid model with distinctively different distri-
bution of subsurface properties, spatially, and by mag-
nitude (Experiment 3). Furthermore, a high degree of 
generalization has been achieved to account for variable 
(injector) well locations (Experiment 2). In addition, we 
demonstrate a significant prediction speed up of the 
GeoDIN model with respect to full physics simulation 
reaching almost fivefold acceleration for the largest model 
simulated, with reduced hardware requirements (two 

GPUs vs. 70 CPUs). 
When training the GeoDIN model, the GPU memory 

allocation may become challenging with model scale up. 
In our experiments with the SPE10 model, the number 
of graph edges increases almost six times faster than 
the number of cells in the underlying simulation grid. 
The graph size may expand at even higher rates when 
distinctive features that govern reservoir connectivity, 
e.g., fractures, faults, and high flow units, are encoded. 
One recommendation would be to utilize the distributed 
deep learning training framework (Horovod) and leverage 
state-of-the-art hardware, such as GPU clusters with 
sufficient memory to perform the training at scale. It is 
also suggested to build on the learnings from Box-Cox 
data transformation and perform a rigorous sensitivity 
and ranking analysis, jointly for network graph object and 
relation attributes, and with variable well positioning to 
evaluate their distinctive impact on learning cell-to-cell 
flow diffusivity. 

When compared to fluid dynamics, the reservoir 
pressure is characterized as the global model property, 
established several orders of magnitude faster than the 
fluid convection speed. In interaction networks, which 
communicate by node-to-node information transfer, the 
spatiotemporal propagation of pressure is more sensitive 
to local embeddings, which makes the learning of repre-
sentative pressure dynamics significantly more challeng-
ing. The GeoDIN model is unable to accurately capture 
meaningful pressure dynamics induced by a single water 
injector, which results in a larger prediction error when 
benchmarked with reservoir simulation. 

On average, over the three conducted experiments, the 
error distribution suggests that a great majority (90% to 

Fig. 21  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, SWAT, and PRESS, respectively, in the 
85-layer simulation model (Experiment 3), over time.

 

 

 
  

Saudi Aramco: Company General Use 

 

 
 
Fig. 20  Results of transmissibility normalization for data points corresponding to active cells, using Box-
Cox transformation.  
 
 

 
 
Fig. 21  The per cell error distribution for the GeoDIN prediction relative to full physics simulation for SOIL, 
SWAT, and PRESS, respectively, in the 85-layer simulation model (Experiment 3), over time. 
 
 



18 The Aramco Journal of Technology Spring 2022

95%) of grid cells fall within 10% to 30% error bound rel-
ative to full physics simulation. The ability of GeoDIN to 
predict spatial pressure dynamics more accurately could 
improve if the model is trained with a variable number 
and use locations of injectors as well as variable injection 
rates. We may conduct such experiments in the future. 

As the way forward, we are currently investigating 
the application of the state-of-the-art NN architectures, 
such as graph NNs with advanced feature encoding and 
augmentation to improve training with clustered and 
sectorized data, learn highly similar graph structures and 
embeddings, propagate information across graphs with 
automated feature learning, and to conserve fluid volumes 
over long prediction times. Ultimately, our objective is 
to generalize and scale up the GeoDIN architectures by 
training with reservoir properties under uncertainty, a 
variety of scenarios of distinctive reservoir connectivity 
(faulted and fractured models), complex structure and 
gridding, e.g., unstructured and locally refined grids, 
and with modeling different recovery drive mechanisms, 
improved oil recovery strategies, and well placement 
and production constraints.
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Cross-borehole ground penetrating radar (XBGPR) is a geophysical technique that allows for high-res-
olution characterization of the interwell region. This method relies on the propagation of electromagnet-
ic (EM) waves — typically in the MHz region — that are analyzed to generate subsurface maps of EM 
properties, which can be interpreted into fluid saturation maps. We present the results of a large-scale 
field experiment complemented by 3D numerical simulations evaluating the feasibility of locating small 
fluid targets of different compositions in the subsurface. 

An array of 33 target wells and six observation wells completed with nonconductive, nonmagnetic pipe 
were used to conduct the experiments. The target wells were filled with different fluids, including dielec-
trically and magnetically tagged fluids, such as polymer solutions and polymer solutions with magnetite. 
Time-domain EM measurements were acquired using a 100 MHz XBGPR system in a semi-reciprocal 
tomographic setup. The acquired waveforms were filtered and processed using bh_tomo, an open source 
platform for XBGPR analysis. Traveltime and amplitude inversions were performed to obtain velocity 
and attenuation maps of the surveyed area. In parallel, 3D numerical simulations were conducted using 
a commercially available finite element modeling package. The simulation results were compared and 
validated with the experimental results. 

The simulations are in overall agreement with the field results; showing the right trend in traveltime 
and amplitude for the different fluids. All fluids caused an increase in traveltime compared to air filled 
target wells. Water appears to cause the largest increase, followed by AN-132, xanthan, and finally xanthan 
with magnetite. The observed traveltime is lower than expected. This may be an indication of the wave 
going around the holes and partially avoiding the slow fluids, especially because the operating wavelength 
is comparable to the well spacing. 

Another possible explanation is that the actual location of the wells is slightly different from the origi-
nal design due to inaccurate drilling. Yet another possibility is that the array may behave as a periodic 
structure, causing modal propagation. The attenuation data shows a clear difference between the empty 
and the liquid filled target holes, but little difference between the liquids. As a whole, the results prove 
that our approach can be used to locate relatively small fluid targets via EM tomographic surveys with 
no previous geological information.

Experimental data of XBGPR is rather limited. Our experiments expand the understanding of the 
challenges and opportunities that such a technique can offer to the oil and gas industry. We have also 
developed and validated modeling capabilities that will enable improved planning and quick testing of 
future surveys.

Imaging Subsurface Targets Using Cross-Borehole 
GPR: A Field and Modeling Approach
Jesus M. Felix Servin and Hussain A. Shateeb

Abstract  /

Introduction
Ground penetrating radar (GPR) is a geophysical technique that allows for high-resolution characterization of 
the subsurface. GPR uses electromagnetic (EM) propagating waves to probe the subsurface and detect structures 
and changes in electrical properties via reflection and/or transmission measurements. Comprehensive descrip-
tions of the technique and its applications can be found in the literature1, 2. GPR has been used in several fields, 
such as glacial exploration and monitoring3, 4, aquifer characterization5, utility detection6, 7, mining8, 9, and voids 
detection10, among others.

Signal penetration depends on the operating frequency and propagating media properties, and ranges widely 
from less than 1 m for clay, to several thousands of meters for ice11. Deep investigation is only possible in highly 
resistive materials and at low operating frequencies (tens of MHz). 

GPR surveys can be divided into surface and borehole, depending on the acquisition configuration, and trans-
mission, Fig. 1. Borehole GPR surveys are conducted in reflection mode when only one borehole is available and 
both the transmitter (Tx) and the receiver (Rx) are sequentially positioned at multiple locations along the same 
borehole. The reflections, caused by changes in the EM properties of the subsurface, are recorded. When two or 
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more boreholes are available, the survey can be conduct-
ed in transmission mode, also known as cross-borehole 
GPR (XBGPR). 

Our work focuses on XBGPR, in which an EM signal 
is launched into the medium of interest by a Tx antenna 
located inside a borehole and the signal is recorded a 
certain distance away by an Rx antenna located inside a 
second borehole. Conventionally, the traveltime and first 
cycle amplitude of the recorded waveforms are picked, 
Fig. 2, and inverted, to obtain velocity and attenuation 
maps of the subsurface that can be further interpreted 
to obtain distribution maps of dielectric permittivity, 
ɛ, magnetic permeability, µ, and electric conductivity, 
σ. More sophisticated techniques to infer subsurface 
properties from the received waveforms, such as full 
waveform inversion, have also been explored and show 
promising results5, 12-15. 

The operating frequency of most borehole GPR systems 
is between 20 MHz to 250 MHz, with corresponding 
wavelengths of 5 m to 0.4 m for common geological 
materials13, 16, 17. Similar to surface GPR, the penetration 
depth ranges from less than a meter in clay, to tens 
of meters in crystalline rock, and thousands of meters 
in salt11. XBGPR is less common than surface GPR. 
Nevertheless, this technique has been implemented in 
multiple areas, such as mining9, cavity imaging17, fracture 
characterization18, and hydrogeophysical investigations19. 

The application of borehole GPR in the oil and gas 
context is rather limited. Subsequently, several studies 
have been performed in recent years to evaluate the 
feasibility of incorporating this technique to some of 
the industry’s operations. Zhou (2020)20 investigated 
the potential use of this technique for well logging and 
production monitoring. Heigl et al. (2005)21 performed 
simulations to determine if mud invasion can be estimated 
by means of borehole GPR. Miorali et al. (2011a)22 and 
(2011b)23 proposed a method to monitor water and oil 
movement in smart wells using permanent downhole 
GPR systems. Oloumi et al. (2015)24 investigated the 
feasibility of imaging oil well perforations using borehole 
GPR in reflection mode. Chen et al. (2002)25 showed that 
this technique is suitable for near wellbore imaging and 
geosteering applications. 

Theory
In XBGPR, the traveltime and amplitude of the received 

signals depend on the EM properties of the media through 
which they propagate. EM waves propagate through air 
with the speed of light. Consequently, their speed in 
the subsurface is a function of the EM properties of the 
subsurface and the frequency of the wave, as described 
by Eqn. 1: 
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where v is the speed of propagation, ω is the angular fre-
quency, µ is the magnetic permeability, ɛ is the dielectric 
permittivity, and σ is the electric conductivity. Moreover, 
if we assume low conductivity (low loss approximation), 
Eqn. 1 simplifies to Eqn. 2: 
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According to the low loss approximation in Eqn. 2, 
the speed of propagation is inversely proportional to 
µ and ɛ. Therefore, increasing either µ, or ɛ, or both, 
should result in lower propagation speed and increased 
signal traveltime. Several processes contribute to signal 
amplitude reduction, including attenuation, spherical 
spreading, scattering, as well as reflections at the inter-
faces. Similar to traveltime, attenuation is a function of 
the EM properties of the propagating medium as well 
as the signal frequency, as described by Eqn. 3:
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Fig. 1  A schematic representation of surface GPR (left), reflection borehole GPR (middle), and 
transmission borehole GPR (right), also known as cross-borehole GRP. 
 
 
 

 
 
Fig. 2  A schematic of a received waveform showing the first break, which is used to calculate the 
traveltime, and the first cycle peak-to-peak amplitude. 
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where α is the attenuation constant, ω is the angular 
frequency, µ is the magnetic permeability, ɛ is the di-
electric permittivity, and σ is the electric conductivity. 

In the case of oil reservoir fluids, significant changes 
in σ and ɛ are typically observed between oil and brine. 
Moreover, changes in µ are not usually observed, unless 
magnetic materials, such as iron oxide, are present in 
the formation. Therefore, µ may serve as a contrast to 
label injected fluids such that they can be differentiated 
from the fluids already present in the reservoir. 

The purpose of this work is to investigate the feasibility 
of labeling fluids using magnetic and dielectric contrast 
agents, and locating them via XBGPR surveys. A series 
of large-scale experiments performed using an array of 
shallow wells are presented. 

Testing Platform
An array of shallow wells designed to function as a testing 
platform for novel EM approaches was used to conduct 
the experiments. The entire platform consists of 47 wells 
of different depths and diameters, completed with non-
conductive and nonmagnetic casing to be suitable for 
EM transmissions, Fig. 3. All wells were sealed from 
the bottom so that no fluids can leak from or into the 
wellbores. Depending upon the inner diameter, depth, 
and location, the wells are divided in four categories: 
deep observation wells (DO1 to DO2), far observation 
wells (O1 to O6), near observation wells (O7 to O12), 
and shallow wells (C1-1 to C3-11). Table 1 summarizes 

the specifications and number of wells drilled for each 
category. For this work, only the near observation and 
shallow wells were used, the other wells are reserved 
for future tests. 

The array design takes into consideration important 
parameters to improve the quality of the planned EM 
surveys. In the case of XBGPR, the borehole depth, D, 
to borehole separation, S, as a rule of thumb should be 
greater than 2. Meeting this condition maximizes the 
angle coverage and prevents refracted airwaves from 
masking direct arrivals2. At the same time, it is import-
ant to make sure that S is large enough to be in the far 
field of the antenna radiation, such that Eqn. 4 is met: 

 

 

 
  

Saudi Aramco: Company General Use 

𝑣𝑣 = {√𝜇𝜇𝜇𝜇√1
2 [√1 + ( 𝜎𝜎

𝜔𝜔𝜔𝜔)
2
+ 1]}

−1

,              (1) 

 

 

𝑣𝑣 = 1
√𝜇𝜇𝜔𝜔

.           (2) 
 

 

𝛼𝛼 = 𝜔𝜔√𝜇𝜇𝜇𝜇√1
2 [√1 + ( 𝜎𝜎

𝜔𝜔𝜔𝜔)
2
− 1]                (3) 

 

 

𝑆𝑆 > 𝑣𝑣
𝑓𝑓           (4) 

 

 

 

 

 

 

 

 

 

 4

where v is the ground velocity and f is the GPR center 
frequency. 

In our case, the borehole depth is 40 m, and the borehole 
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Fig. 3  A schematic representation of the testing platform. For the experiments presented in this work, 
only O7-O12 and C1-1 to C3-11 were used. 
 
 
 
 
 

Type of 
Well 

Inner 
Diameter 

(m) 

Depth 
(m) 

# of 
Wells 

Deep 
observation 0.3048 200 2 

Far 
observation 0.3048 40 6 

Near 
Observation 0.1524 40 6 

Shallow 
wells 0.3048 30 33 

 
Table 1  A summary of wells drilled and their dimensions. 
 
 
 
 

Fig. 3  A schematic representation of the testing platform. For the experiments presented in this work, only Wells O7-O12 and C1-1 to C3-11 were used.

Type of Well Inner 
Diameter (m) Depth (m) # of Wells

Deep observation 0.3048 200 2

Far observation 0.3048 40 6

Near observation 0.1524 40 6

Shallow wells 0.3048 30 33

Table 1  A summary of wells drilled and their dimensions.
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separation is 6 m, yielding a ratio of 6.67, well above the 
minimum recommendation of 2. The borehole separation 
is also larger than the velocity to center frequency ratio, 
which is approximately 1.2. Therefore, the dimensions 
of our array ensure significant angle coverage and far 
field conditions for the measurements. 

Acquisition System and Procedure
A typical XBGPR system consists of three main com-
ponents: a control unit, a power supply system, and an-
tennas. For our tests, we used a pair of MALA Borehole 
100 MHz Slimhole Antennas coupled to a MALA ProEx 
control unit. The antennas are powered downhole by 
batteries, and the data is conveyed to the control unit 
at the surface via fiber optics to avoid EM interference. 

The data was collected in a tomographic manner be-
tween pairs of observation wells using a multiple offset 
gathers approach. To maintain a balance between the time 
required to conduct each survey and the ray coverage, 
we opted for a semi-reciprocal acquisition setup, Fig. 
4. This approach yields higher resolution in the center 
and lower resolution close to the wellbore. It also yields 
higher ray coverage than a sparse setup and it is less 
time-consuming than a dense setup16. 

Prior to lowering the antennas, the traveltime through 

air for a known distance was recorded, to be used as 
a time-zero correction. Next, the Tx was lowered 5 m 
below the surface and the Rx was moved from 5 m above 
the Tx, to 5 m below it, collecting waveforms every 0.1 
m. It has been reported that when the angle between 
the Tx and Rx is large, the signal is received away from 
the antenna feed points, leading to errors in velocity 
estimates26. Consequently, we limited the acquisition 
to 5 m above and below the position of the Tx, which 
limits the angle to no more than 40°. Then, the Tx was 
lowered 1 m and the acquisition from 5 m above to 5 m 
below it every 0.1 m was repeated. 

This process continued until the Tx reached a depth of 
35 m. Next, both tools were brought to the surface and a 
second time-zero correction shot was acquired. We then 
exchanged the Tx and Rx boreholes and repeated the 
acquisition process previously described. This procedure 
was repeated for each pair of wells. 

Experiments and Fluid Preparation
The experiments involved filling the shallow wells with 
a certain type of fluid and conducting XBGPR tomo-
graphic acquisitions using the near observation wells. 
Five different experiments were conducted based on 
the type of fluid filling the shallow boreholes. Table 2 
summarizes the composition of each fluid, as well as the 
approximate EM properties. The well water was obtained 
from a well in the vicinity of the testing area. The AN-
132 polymer was acquired from SNF; the xanthan gum 
had a technical grade purity level and was acquired from 
FuFeng; the magnetite was acquired from LKAB under 
the commercial name of MagnaChem10. All chemicals 
were used as received. 

Mixing for fluids 3 to 5 was performed in a large tank 
with three rotating blades mounted at the top. The mixing 
procedure consisted of first filling the tank with water 
to 80% to 90% of the desired volume. Then, adding 
the magnetite (if applicable), followed by the polymer 
(xanthan or AN-132), while mixing. Next, mixing was 
stopped and the tank was topped up to the final volume. 
Finally, mixing was resumed and continued for one hour. 
During that time, the viscosity of the fluid was monitored. 
Approximately three batches had to be prepared for each 
experiment. Overall, the fluids looked homogeneous and 
the viscosity between different batches was comparable. 
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Fig. 4  A schematic of the three different acquisition setups. Sparse (left) results in ray coverage gaps 
close to the wellbore, semi-reciprocal (middle) improves ray coverage near to the wellbore, dense (right) 
results in the best ray coverage, but at increased data size and acquisition effort.  
 
 
# Name Fluid σ [S/m] εr μr 
1 Air 

(baseline) 
Air ~0 1 1 

2 Water Well water 0.5 80 1 
3 AN-132 2.5 g/L of AN-132 dissolved in well water 0.7 > 80 1 
4 Xanthan 5.0 g/L of xanthan dissolved in well water 0.8 > 80 1 

5 Magnetite 7.5 g/L of xanthan and 100 g/L of 
magnetite dissolved in well water 1.0 > 80 > 1 

 
Table 2  The fluids used to fill the shallow wells for each of the performed experiments. 
 
 
 

 
 
Fig. 5  The traveltime difference between water and air for wells O7 and O12. Since most of the 
traveltime differences are positive, it can be concluded that overall water is slower than air. 
 
 
 
 

Fig. 4  A schematic of the three different acquisition setups. 
Sparse (left) results in ray coverage gaps close to 
the wellbore, semi-reciprocal (middle) improves ray 
coverage near to the wellbore, dense (right) results in 
the best ray coverage, but at increased data size and 
acquisition effort.

# Name Fluid σ [S/m] εr μr

1 Air (baseline) Air ~0 1 1

2 Water Well water 0.5 80 1

3 AN-132 2.5 g/L of AN-132 dissolved in well water 0.7 > 80 1

4 Xanthan 5.0 g/L of xanthan dissolved in well water 0.8 > 80 1

5 Magnetite 7.5 g/L of xanthan and 100 g/L of magnetite dissolved in well water 1.0 > 80 > 1

Table 2  The fluids used to fill the shallow wells for each of the performed experiments.



6 The Aramco Journal of Technology Spring 2022

Data Processing Workflow
Data processing and interpretation was done using bh_
tomo27, an open-source platform developed for GPR 
surveys. The raw data was subjected to the following 
preprocessing workflow: 

1. Filtering: A band pass filter was used to remove noise 
from the data. The low and high cut frequencies used 
are 10 MHz and 250 MHz, respectively. 

2. Pruning: Stations shallower than 5 m below the surface 
were removed, to avoid refracted waves propagating 
through the air. In addition, waveforms with a sig-
nal-to-noise ratio (SNR) below 1 were pruned. This 
process generally removed 30% to 50% of the data. 

After filtering and pruning, the data was processed 
to pick the traveltime and peak-to-peak amplitude for 
each trace. 

Traveltime Analysis
Traveltime picking was done using the semi-automatic 
traveltime picking module of bh_tomo. This approach 
entails picking the first break of a series of waveforms 
that are used to automatically pick the first break of the 
remaining data using cross correlation. Next, the manual 
traveltime picking module was used to quickly browse 
through the picked times and correct obvious mistakes. 
Most of the errors were due to low SNR. Once the data 
were picked, we proceeded to compare the traveltimes 
for different fluids. 

Traveltime Difference

The traveltime difference was estimated by compar-
ing the picked traveltime for a given Tx-Rx position 
for different fluids. This information was used as a first 
approximation to evaluate if the fluids were having an 
impact on the signal’s traveltime. This may be the best 
way to see small changes, because traveltime inversion 
involves smoothing, which could mask small changes 
in slowness. 

Figure 5 shows the traveltime difference between water 
and air for well pairs O7 and O12. Most of the differences 
are positive, meaning that the traveltime is longer when 
the wells are filled with water than when they are filled 
with air. It should be noted that the traveltime difference 

is generally small (< 4 ns). Similar results were obtained 
when comparing AN-132 and magnetite with air (data 
not shown). 

Traveltime Inversion
The next step involved inverting the traveltime data to 
obtain a map of slowness. Multiple grid element sizes for 
the inversion models were tested. The best results were 
obtained using elements of 0.25 m by 0.25 m, where the 
bh_tomo offers two different algorithms to perform the 
inversion, geostatistics and LSQR. For the work presented 
here, only the latter was used. Table 3 summarizes the 
parameters used to perform the inversion. In the absence 
of other constraints, the smoothing weight in x and z 
were modified until a minimum in the variance of the 
residuals (σ2) was obtained, Fig. 6. The inversion generates 
a map of subsurface velocity between two wells, Fig. 7. 

In addition to the regular inversion, bh_tomo has two 
options that allow for time-lapse evaluation of the data. 
The first one is simultaneous inversion, in which two 
data sets are inverted simultaneously while trying to be 

Fig. 5  The traveltime difference between water and air for Wells O7 and O12. Since most of the traveltime differences are positive, it can be 
concluded that overall water is slower than air.
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Parameter Value

Number of straight rays’ iterations 1

Number of curved rays’ iterations 2

Solver tolerance 1e-6

Maximum number of solver iterations 100

Constraints weights 1

Smoothing weight x 10

Smoothing weight y 10

Smoothing weight in z 10

Smoothing operator order 2

Maximum model parameter variation per iteration 50%

Table 3  The parameters used to perform the traveltime inversion using the LSQR 
algorithm.
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as close as possible to a reference tomogram; for example, 
air and water, with air as the reference. In this case, the 
simultaneous inversion would highlight the differenc-
es caused by the water. The second approach consists 

on inverting the change in traveltime difference rather 
than the traveltime itself. Both approaches were tested 
but simultaneous inversion did not generate satisfacto-
ry results. We speculate that the differences were too 
small and were masked by this approach. The second 
approach is better suited for small changes in traveltime. 
Subsequently, one limitation is that it assumes the ray 
paths are the same for both data sets. This assumption 
is reasonable if the difference in traveltime is small; 
however, it may not be suitable in situations where the 
difference in traveltime is large or if the soil conditions 
significantly changed from one survey to the other. The 
result of the inversion is a map of percentage change in 
slowness, Fig. 8. Regions where the change is positive 
represent portions of the reservoir that became slower 
in the second survey.

Amplitude Analysis and Inversion

Peak-to-peak amplitude picking was performed using the 
automatic function provided by bh_tomo. Next, the traces 
were inspected manually to correct obvious mistakes. 
Amplitude inversion was done using the LSQR algorithm 
to obtain maps of attenuation. The fitting parameters 
are the same used for the traveltime inversion, Table 
3, and were optimized to minimize the variance of the 
residuals. The inversion generates a map of attenuation 
between two wells, Fig. 9. 

Results and Discussion
A subset of six panels corresponding to well pairs O8-
O9, O12-O7, and O12-O11 were used to evaluate the 
results. We begin by investigating the data quality and 
ray coverage. The data shows low ray coverage in some 
regions and a complete lack of data for certain intervals, 

Fig. 6  The norm of the residuals (top left), residuals histogram (bottom left), residuals as a function of angle with respect to the horizontal (top right) 
and residuals as a function of Tx and Rx depth (bottom right). The smoothing weights was changed until a minimum in the variance of the 
residuals was achieved.
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Solver tolerance 1e-6 
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Fig. 7  The velocity map obtained for the two well panels (O12-O11 and O11-O12) inverted together with 
air-filled shallow wells. The fast regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 
 

 
 
Fig. 8  A map of change in slowness, as a percentage, obtained for wells O8-O9 and O9-O8 traveltime 
values of water minus air and using the inversion of air as the reference. Increases in slowness are 
shown in the central region, where the wells are located. This means that water is causing those regions 
to become slower than when the wells were empty. 
 

Fig. 7  The velocity map obtained for the two well panels 
(O12-O11 and O11-O12) inverted together with air-
filled shallow wells. The fast regions are present in the 
center of the map, corresponding to the location of the 
shallow wells.
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Fig. 10. Based on the resistivity logs of DO1 and DO2, 
it appears that for values below 50 Ωm, the signal falls 
below the limit of detection before reaching the Rx. We 
speculate that these intervals correspond to layers of 
clay, which are known to result in high attenuation for 
GPR signals11. Based on the ray coverage, we conclude 
that large variations in resistivity are present within the 
array. For example, for well pair O12-O7 there is no ray 
coverage below 25 m, while there is significant coverage 
for the other two well pairs, especially O12-O11. This 
suggests that some of the layers may not be continuous 
across the entire array. Because of the lack of data, the 
results obtained from regions with low ray coverage will 
have higher uncertainty. 

The traveltime difference data suggests that filling the 
wells with liquids results in increased traveltime. Figure 
11 shows the traveltime difference between water and air 
(top) and magnetite and water (bottom) for the panels 
obtained from Wells O7 and O12. Most of the traveltime 
differences for the first case are positive, meaning that 
filling the shallow wells with water increases the signal’s 
traveltime. 

A similar trend is observed when the wells are filled 
with fluids 3 to 5. This trend was expected because all 
liquids have higher ε and/or μ than water, but it must 
be noted that the traveltime is shorter than anticipated. 
This may be an indication of the wave going around the 
wells and partially avoiding the slow fluids, especial-
ly because the operating wavelength is comparable to 
the well spacing. Another factor that may contribute to 
this discrepancy is that the actual location of the wells 
is different from the original design due to inaccuracy 
while drilling. 

Consequently, in some cases, only a small portion of a 
fluid filled well is between the observation wells, rather 
than the entire well. When we compare magnetite and 
water, we observe that most of the traveltime differences 
are negative. This suggests that magnetite reduces the 
signal travel as compared to just water. A similar trend is 
observed when fluids 3 and 4 are compared with water. 
This trend was not expected because the product of ε 
and μ for fluids 3 to 5 should be higher than for water. 
Therefore, an increase on signal traveltime for these 
fluids over water was expected. 

The inversion of the traveltime difference shows similar 
results: an increase in slowness when the shallow wells 
are filled with liquids, Fig. 12, water showing the great-
est increase, followed by AN-132, xanthan, and finally 
magnetite. Based on the estimated EM properties of the 
fluids, Table 2, we expected water to result in the shortest 
traveltime and magnetite in the longest; however, the 
data shows the opposite. 

The attenuation data shows a clear difference between 
air filled and liquid filled shallow wells, but similar atten-
uation among the different liquids, with AN-132 showing 
the lowest attenuation, followed by xanthan, and then 
water and magnetite, Fig. 13. As expected, filling the wells 
with conductive liquids increases the signal attenuation. 

To understand the potential reasons for the discrep-
ancies observed in the traveltime data, 3D numerical 

Fig. 8  A map of change in slowness, as a percentage, 
obtained for Wells O8-O9 and O9-O8 traveltime values 
of water minus air and using the inversion of air as 
the reference. Increases in slowness are shown in the 
central region, where the wells are located. This means 
that water is causing those regions to become slower 
than when the wells were empty.
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Fig. 7  The velocity map obtained for the two well panels (O12-O11 and O11-O12) inverted together with 
air-filled shallow wells. The fast regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
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values of water minus air and using the inversion of air as the reference. Increases in slowness are 
shown in the central region, where the wells are located. This means that water is causing those regions 
to become slower than when the wells were empty. 
 

Fig. 9  An attenuation map obtained for well panels O8-O9 
and O9-O8 inverted together with magnetite filled 
shallow wells. High attenuation regions are present in 
the center of the map, corresponding to the location of 
the shallow wells.
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Fig. 9  An attenuation map obtained for wells O8-O9 and O9-O8 panels inverted together with magnetite 
filled shallow wells. High attenuation regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 

 
 
Fig. 10  From left to right, the resistivity log for DO2, ray coverage for panel O9-O8, ray coverage for 
panel O12-O7, ray coverage for panel O12-O11, and the resistivity log for panel DO1. The intervals of low 
or null ray coverage seem to correlate with regions where the resistivity is below 50 Ωm. 
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simulations that employed parameters similar to those 
encountered in the field were conducted using a commer-
cially available finite element package. The numerical 
model was developed using a strategy similar to the one 
presented by Felix Servin et al. (2019)28. The simulation 
results confirm our experimental results: water appears 
to be the slowest fluid, followed by xanthan and then 
magnetite, Fig. 14. 

This trend was not anticipated based on the EM 

properties of the fluids. We speculate that a likely expla-
nation for such unexpected behavior is that the array is 
acting as a periodic structure imposing constraints on 
the propagation mode of the wave, leading to nonmono-
tonic relationships between the phase speed and the 
EM properties. Overall, the simulations agree with the 
experimental results; not only showing that the liquids 
are slower than air, but also displaying the right trend 
for the traveltime: water being the slowest, followed by 

Fig. 10  From left to right, the resistivity log for DO2, ray coverage for well panel O9-O8, ray coverage for well panel O12-O7, ray coverage for well 
panel O12-O11, and the resistivity log for well panel DO1. The intervals of low or null ray coverage seem to correlate with regions where the 
resistivity is below 50 Ωm.
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Fig. 9  An attenuation map obtained for wells O8-O9 and O9-O8 panels inverted together with magnetite 
filled shallow wells. High attenuation regions are present in the center of the map, corresponding to the 
location of the shallow wells. 
 
 
 

 
 
Fig. 10  From left to right, the resistivity log for DO2, ray coverage for panel O9-O8, ray coverage for 
panel O12-O7, ray coverage for panel O12-O11, and the resistivity log for panel DO1. The intervals of low 
or null ray coverage seem to correlate with regions where the resistivity is below 50 Ωm. 
 
 

Fig. 11  The traveltime difference between water and air (top), and magnetite and water (bottom) for Wells O7 and O12.
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Fig. 12  Maps of change in slowness. From left to right, water minus air, AN-132 minus air, xanthan minus air, and magnetite minus air. From top to 
bottom, well panel 8-9, well panel 12-7, and well panel 12-11.
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Fig. 12  Maps of change in slowness. From left to right, water minus air, AN-132 minus air, xanthan minus 
air, and magnetite minus air. From top to bottom, well 8-9 panel, well 12-7 panel, and well 12-11 panel. 
 
 



11 The Aramco Journal of Technology Spring 2022

AN-132, xanthan, and then magnetite. Based on the 
simulations, the difference in traveltime between water, 
AN-132, and xanthan is likely due to the difference in σ. 
Moreover, the difference in traveltime is observed not on 
the first arrival, but on the second peak of the signals. 

The implications are that the inversion algorithm may 
have to be modified to account for this. It is also shown 
that increasing σ reduces traveltime, e.g., water vs. xan-
than. This confirms our hypothesis that fluids that are 
more conductive will prevent the signal from penetrating 
deep into the wellbore, and therefore will diminish the 
effect of the fluids on the signal’s traveltime. 

The simulations also show that while water should re-
sult in reduced attenuation, the rest of the liquids should 
have similar amplitude. The field results show water 
resulting in attenuation comparable to the other fluids. 
This could be a consequence of slight changes in the 
saturation of the matrix due to rain in the days leading 

to some of the experiments; however, the results are in 
overall agreement with the simulations. 

Conclusions 
The results of these tests prove that XBGPR surveys 
can be used to locate relatively small targets of fluids via 
time-lapse tomographic surveys, even with no previous 
geological information. We were able to demonstrate the 
effect of µ and/or σ on the signal traveltime and amplitude. 
Consequently, the traveltime effect is smaller and the 
trend is different from what was originally anticipated, 
most likely due to the periodic structure of the array and 
the difference in σ of the fluids. The observed trends 
concur with the 3D numerical simulations, highlighting 
the importance of conducting simulations before and 
after future tests.

An analysis of the traveltime data enables differentiating 
between air and liquid targets, and to a lesser degree one 

Fig. 13  From left to right, maps of attenuation for well pair O8-O9 when filled with air, water, AN-132, xanthan, and magnetite, respectively. 

 

 
  

Saudi Aramco: Company General Use 

 
 
Fig. 13  From left to right, maps of attenuation for well pair O8-O9 when filled with air, water, AN-132, 
xanthan, and magnetite, respectively. 
 
 
 
 

 
 
Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal. 
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Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal.
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Fig. 14  The simulated received waveforms for different fluids for a 100 MHz signal. 
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liquid from another. Subsequently, the behavior is not 
what was expected prior to conducting the experiments. 
Based on the experimental and simulations results, we 
conclude that the electrical conductivity of the fluids 
has a significant effect on traveltime. For a given fluid, 
increasing the conductivity will reduce the traveltime. 
Looking at the attenuation data, we conclude that in-
creasing conductivity will also reduce signal amplitude. 

Because of the difference in conductivity between the 
different fluids, it was not possible to quantify how much 
effect µ had on signal traveltime. Future tests should be 
designed such that all fluids have as much as possible 
the same conductivity. Due to the design of the testing 
platform, sharp changes in EM properties are expected 
between the rock and the wells. Consequently, inversion 
involves smoothing, and therefore, is not best suited for 
sharp changes. It may be worth exploring the possibility 
of using full waveform inversion. It must also be noted 
that in the reservoir, such sharp changes are not expected. 

Moving forward, we recommend conducting similar 
experiments in reflection mode, since this setup appears 
to be more suitable for oil and gas applications, given the 
rather limited penetration obtained in transmission mode. 
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